precipitation indices
Recently Published Documents


TOTAL DOCUMENTS

179
(FIVE YEARS 87)

H-INDEX

28
(FIVE YEARS 6)

Atmosphere ◽  
2021 ◽  
Vol 12 (11) ◽  
pp. 1522
Author(s):  
Xiaoxia Yang ◽  
Juan Wu ◽  
Jia Liu ◽  
Xuchun Ye

In this study, 11 extreme precipitation indices were selected to examine the spatiotemporal variation of extreme precipitation in the Poyang Lake Basin during 1960–2017. The responses of extreme precipitation indices to El Nino/Southern Oscillation (ENSO) events of different Pacific Ocean areas were further investigated. The results show that the temperature in the Poyang Lake Basin has increased significantly since the 1990s, and the inter-decadal precipitation fluctuated. Most extreme precipitation indices showed an increasing trend with abrupt changes occurring around 1991. Spatially, most of the extreme precipitation indices decreased from northeast to southwest. The increasing trend of most indices in the center and south of the basin was relatively prominent. The linear correlations between the extreme precipitation indices and Nino 1 + 2 were the most significant. On the timescale of 2–6 years, a common oscillation period between the extreme precipitation of the basin and the four ENSO indices can be observed. After 2010, the positive correlation between the precipitation of the Poyang Lake Basin and the SST (sea surface temperature) anomalies in the equatorial Pacific increased significantly. Additionally, annual total wet–day precipitation in most areas of the Poyang Lake Basin increased with varying degrees in warm ENSO years. The results of this study will improve the understanding of the complex background and driving mechanism of flood disasters in the Poyang Lake Basin.


Climate ◽  
2021 ◽  
Vol 9 (11) ◽  
pp. 160
Author(s):  
Ezéchiel Obada ◽  
Eric Adechina Alamou ◽  
Eliezer Iboukoun Biao ◽  
Esdras B. Josué Zandagba

Observed rainfall data (1961–2016) were used to analyze variability, trends and changes of extreme precipitation indices over Benin. Nine indices out of the ones developed by the Expert Team on Climate Change Detection and Indices (ETCCDI) were used. The results indicate a mix of downward and upward trends for maximum 1-day precipitation (RX1day) and maximum 5-days precipitation (RX5day). Decrease trends are observed for annual total precipitation of wet days (P), while significant increases are found for the simple daily intensity index (SDII). The number of wet days (RR1) and maximum consecutive dry days (CDD) show a mix of increase/decrease trends. However, the number of heavy (R10) and very heavy (R20) wet days and maximum consecutive wet days (CWD) show decreased trends. All wet indices increased over 1991–2010 in relation to 1971–1990. The increase in all wet indices over Benin could explain the intensification of hydrology, and the increase in the frequency and the intensity of floods. It caused damages such as soil erosion, crop destruction, livestock destruction, displacement of populations, proliferation of waterborne diseases and loss of human life. Some adaptive strategies are suggested to mitigate the impacts of changes in extreme rainfall.


Water ◽  
2021 ◽  
Vol 13 (20) ◽  
pp. 2848
Author(s):  
Wenfeng Hu ◽  
Junqiang Yao ◽  
Qing He ◽  
Jing Chen

The Tibetan Plateau (TP) are regions that are most sensitive to climate change, especially extreme precipitation changes with elevation, may increase the risk of natural disasters and have attracted attention for the study of extreme events in order to identify adaptive actions. Based on daily observed data from 113 meteorological stations in the Tibetan Plateau and the surrounding regions in China during 1971–2017, we calculated the annual total precipitation and extreme precipitation indices using the R ClimDex software package and explored elevation-dependent precipitation trends. The results demonstrate that the annual total precipitation increased at a rate of 6.7 mm/decade, and the contribution of extreme precipitation to total precipitation increased over time, and the climate extremes were enhanced. The annual total, seasonal precipitation, and precipitation extreme trends were observed in terms of elevation dependence in the Tibetan Plateau (TP) and the surrounding area of the Tibetan Plateau (TPS) during 1971–2017. There is growing evidence that the elevation-dependent wetting (EDWE) is complex over the TP. The trends in total precipitation have a strong dependence on elevation, and the EDWE is highlighted by the extreme precipitation indices, for example, the number of heavy precipitation days (R10) and consecutive wet days (CWD). The dependence of extreme precipitation on elevation is heterogeneous, as other extreme indices do not indicate EDWE. These findings highlight the precipitation complexity in the TP. The findings of this study will be helpful for improving our understanding of variabilities in precipitation and extreme precipitation in response to climate change and will provide support for water resource management and disaster prevention in plateaus and mountain ranges.


2021 ◽  
Vol 18 ◽  
pp. 157-167
Author(s):  
Réka Suga ◽  
Otília A. Megyeri-Korotaj ◽  
Gabriella Allaga-Zsebeházi

Abstract. In the framework of the KlimAdat national project, the Hungarian Meteorological Service (OMSZ) is aiming to perform 10 km horizontal resolution simulations with the 2015 version of the REMO regional climate model over Central and Eastern Europe. The long-term simulations were preceded by a 10-year long sensitivity study on domain size, which is summarised in this paper. We selected three different domains embedded in each other, which contain the whole area of the Danube and Tisza river catchments. Lateral boundary conditions were obtained from the 50 km resolution REMO driven by the MPI-ESM-LR global climate model. Simulations were performed for the period of 1970–1980 including 1-year spin-up. Monthly and seasonal means of daily 2 m temperature, precipitation sum and several precipitation indices were evaluated. Reference datasets were E-OBS 19.0 and CarpatClim-HU. We can conclude, that the selection of domain size has a larger impact on the simulation of precipitation, and in the case of the seasonal mean of the precipitation indices, the differences amongst the results obtained on each model domain exceed 10 %. In general, the smallest biases occurred on the largest domain, therefore further long-term simulations are being produced on this domain.


Atmosphere ◽  
2021 ◽  
Vol 12 (9) ◽  
pp. 1136
Author(s):  
Wenbo Yan ◽  
Yunling He ◽  
Ya Cai ◽  
Xilin Cui ◽  
Xinxing Qu

Global warming is increasing the frequency and intensity of extreme weather events around the world. The extreme climate in plateau and mountainous areas is sensitive and fragile. Based on the software Rclimdex 1.0, the spatio-temporal variation characteristics of 27 extreme climate indices at 120 meteorological stations were calculated in Yunnan from 1960 to 2019. The results show that the extreme temperature is rising, and the warming rate at night is higher than that in the daytime. It showed a trend of warming and drying, and precipitation was concentrated into more intense bursts. Extreme temperature cold indices (TX10p, TN10p, FD0, ID0, and CSDI) were negatively correlated with extreme precipitation indices (R × 5day, PRCPTOT, R10 mm, R20 mm, and R25 mm). Extreme temperature warmth indices (TX90p and TN90p) were positively correlated with extreme precipitation indices (R × 5day, CWD, PRCPTOT, R10 mm, R20 mm, and R25 mm). The change rate of extreme temperature does not increase linearly with altitude. The increase in middle-altitude and high-altitude areas is higher than that in low-altitude areas. Compared with ENSO and AO, NAO is a vital circulation pattern affecting the extreme climate in Yunnan. The influence of NAO on Yunnan’s extreme climate indices is most significant in the current month and the second month that follows. NAO was negatively correlated with extreme temperature warm indices (TN90p, TX90p, SU25, and TR20). NAO positively correlates with the extreme cold temperature indices (TN10p and TX10p). Except that ENSO has a significant effect on CDD, the effect of the general circulation patterns on the extreme temperature indices was more significant than that on the extreme precipitation indices in Yunnan. The results of this study are helpful to further understand and predict the characteristics of extreme climatic events and the factors affecting their geographical locations and atmospheric circulation patterns in Yunnan.


2021 ◽  
pp. 1-63
Author(s):  
Bin Tang ◽  
Wenting Hu ◽  
Anmin Duan

AbstractA future projection of four extreme precipitation indices over the Indochina Peninsula and South China (INCSC) region with reference to the period 1958–2014 is conducted through the application of multimodel ensemble approach and rank-based weighting method. The weight of each model from phase 6 of the Coupled Model Intercomparison Project (CMIP6) is calculated depending on its historical simulation skill. Then, the weighted and unweighted ensembles are used for future projections. The results show that all four extreme precipitation indices are expected to increase over the INCSC region, both in the middle (2041–2060) and at the end (2081–2100) of the 21st century, under three Shared Socioeconomic Pathway (SSP) scenarios. The increases in total extreme precipitation (R95p), extreme precipitation days (R95d), and the fraction of total rainfall from events exceeding the extreme precipitation threshold (R95pT) in the Indochina Peninsula are more significant than those in South China. The occurrence of extreme rainfall events may become more frequent in the future over the INCSC region, since the probability that R95pT increases is larger than 0.7 in the whole INCSC region. A comparison between the weighted and unweighted ensemble means shows that the uncertainty over South China is almost always reduced after applying the weighted scheme to future probabilistic projection, while the reductions in uncertainty over the Indochina Peninsula may depend on SSPs. The more extreme precipitation over the INCSC region in the future may be related to the larger water vapor supply and the more unstable local atmospheric stratification.


Sign in / Sign up

Export Citation Format

Share Document