real time transmission
Recently Published Documents


TOTAL DOCUMENTS

226
(FIVE YEARS 38)

H-INDEX

12
(FIVE YEARS 1)

Volcanica ◽  
2021 ◽  
Vol 4 (S1) ◽  
pp. 73-92
Author(s):  
Rigoberto Aguilar Contreras ◽  
Edu Taipe Maquerhua ◽  
Yanet Antayhua Vera ◽  
Mayra Ortega Gonzales ◽  
Fredy Apaza Choquehuayta ◽  
...  

Urban development in the areas surrounding active volcanoes has led to increasing risks in southern Peru. In order to evaluate the hazard, the Instituto Geológico, Minero y Metalúrgico (INGEMMET) created a Volcano Observatory (OVI) to carry out detailed geological investigations to understand eruption histories and provide volcanic hazard maps. The generation of geological information on volcanoes has allowed the identification of scenarios and zoning of potentially impacted areas. This information has also allowed OVI to implement surveillance networks giving priority to the volcanoes that pose the greatest risk to the population, infrastructure, and economic activities. Since 2006, OVI has been running volcanic monitoring networks with a multidisciplinary approach, improving real-time transmission, and making timely forecasts. Based on geological information and the risk posed by the volcanoes, the greatest efforts have been made to monitor Sabancaya, Misti, Ubinas, and Ticsani volcanoes. Following the order of priorities, monitoring of Coropuna, Huaynaputina, Tutupaca and, Yucamane volcanoes has also been developed. In addition, OVI carries out routine education activities and diffusion of information that serve to manage volcanic risk in Peru. El desarrollo urbano en zonas aledañas a volcanes activos ha conllevado a la generación de riesgos cada vez mayores en el sur del Perú. Con la finalidad de evaluar el peligro, el Instituto Geológico, Minero y Metalúrgico (INGEMMET) creó un observatorio vulcanológico (OVI) para realizar estudios geológicos detallados que permitan conocer las historias eruptivas y elaborar mapas de peligros volcánicos. La generación de información geológica sobre los volcanes ha permitido la identificación de escenarios y la zonificación de áreas con potencial a ser afectadas. Esta información también ha permitido al OVI implementar sus redes de monitoreo priorizando los volcanes que representan mayor riesgo para la población, la infraestructura y las actividades económicas. Desde el año 2006, el OVI viene implementando redes de vigilancia volcánica con un enfoque multidisciplinario, mejorando la transmisión en tiempo real y realizando pronósticos oportunos. En base a la información geológica y el nivel de riesgo de los volcanes, se han puesto los mayores esfuerzos en monitorear los volcanes Sabancaya, Misti, Ubinas y Ticsani. Siguiendo el orden de prioridades, el OVI ha comenzado, también, el monitoreo de los volcanes Coropuna, Huaynaputina, Tutupaca y Yucamane. Además, el observatorio desarrolla actividades permanentes de educación y difusión de la información que sirven a la gestión del riesgo volcánico en el Perú.


2021 ◽  
Author(s):  
D. Le Gac ◽  
D. Bendimerad ◽  
I. Demirtzioglou ◽  
I. Fernandez De Jauregui Ruiz ◽  
A. Lorences-Riesgo ◽  
...  

2021 ◽  
Author(s):  
Jiaqi Jin ◽  
Junjie Ma ◽  
Limin Liu ◽  
Linhai Lu ◽  
Guotong Wu ◽  
...  

2021 ◽  
Author(s):  
Jaime Jiménez ◽  
Igor Rodríguez ◽  
David Reguilón ◽  
Aitzol Zuloaga ◽  
Jesús Lázaro

Abstract TSN (Time-Sensitive Networking) has replaced outdated Fieldbus and non-deterministic Ethernet in the Industry 4.0. Field buses are not capable of providing neither connection for industry 4.0 IoT (Internet of Things) nor compatibility between different manufacturers. On the other hand, Ethernet is not able to ensure real-time. On the contrary, TSN guarantees real-time transmission, IoT and compatibility between devices. However, adapting to frequently changing needs makes TSN protocol evolve continuously. For this reason, devices for TSN analysis, such as PCs or not advanced frame analysis equipment are not able to process TSN packets at the speed that standard advances, discarding them as wrong frames. The integration of a System on Chip (SoC) that contains an FPGA (Field Programmable Gate Array) and a microcontroller, with capacity for reconfiguration and monitoring of the frames in the protocol, would be an ideal solution to this problem. This paper describes how to encapsulate TSN frames in Ethernet packets using an FPGA. Such Ethernet frames can subsequently be decapsulated, i.e. in a PC, and thus enable analysing TSN traffic in nonspecialized devices.


2021 ◽  
Vol 2021 ◽  
pp. 1-17
Author(s):  
Lu Kong ◽  
JinBo Wang ◽  
Shan Zhou ◽  
MengRu Wang

Embedded software is increasingly being used with high reliability. However, the fault localization of embedded software is still largely dependent on the experience of engineers. Besides, faults in embedded software programs are not independent individuals; they are related to each other and affect each other, which may lead to more complex interaction behavior. These uncertainties render the traditional methods for single-fault localization with limited practical value. This paper has proposed a multiple-fault localization method to be applied to the embedded software, with emphasis on the cache-based program spectra-acquiring method and the hybrid clustering-based fault partition method. Through case studies on 108 groups of the subject program, it has been proved that the hybrid clustering-based fault partition method has significantly improved the effectiveness of multiple-fault localization in comparison with the traditional fault localization methods. Experiments on three embedded software programs in engineering have revealed that the cache-based program spectra-acquiring method saves nearly half of the running-time cost compared with the traditional spectrum-acquiring method based on real-time transmission. Therefore, the multiple-fault localization method proposed in this paper can be applied in embedded software debugging and testing in engineering.


Sign in / Sign up

Export Citation Format

Share Document