biodiesel blend
Recently Published Documents


TOTAL DOCUMENTS

378
(FIVE YEARS 147)

H-INDEX

35
(FIVE YEARS 5)

2022 ◽  
Vol 227 ◽  
pp. 107122
Author(s):  
Cauã A. Moreira ◽  
Eduardo C.M. Faria ◽  
Jaqueline E. Queiroz ◽  
Vitor S. Duarte ◽  
Marcelo do N. Gomes ◽  
...  

2022 ◽  
Vol 2022 ◽  
pp. 1-7
Author(s):  
J. Arunprasad ◽  
Arif Senol Sener ◽  
R. Thirugnanasambantham ◽  
T. Elango ◽  
T. Bothichandar

Nanoparticles are an emerging concept for increasing fuel properties. The purpose of this research work is to determine the effect of magnesium oxide nanoparticles on the performance and emission characteristics of diesel engines that run on a spirulina microalgae biodiesel blend (B20) as a fuel. The ultrasonication was used to disperse MgO nanoparticles in B20 fuel at various concentrations (25, 50, 75, and 100 ppm). The significant findings indicated that B20+100 blends reduced specific fuel consumption by 20.1% and had a 5.09% higher brake thermal efficiency than B20. B20+100 blends reduced CO, hydrocarbon, and smoke emissions by a maximum of 32.02%, 30.03%, and 26.07%, respectively, compared to B20.


Energies ◽  
2021 ◽  
Vol 15 (1) ◽  
pp. 242
Author(s):  
Nguyen Tuan Nghia ◽  
Nguyen Xuan Khoa ◽  
Wonjun Cho ◽  
Ocktaeck Lim

This paper presents a study on the effect of the ratio of biodiesel and injection timing on the performance of diesel engines and their emissions. The research engine is a cylinder engine AVL-5402, simulated by software AVL-Boost. The simulated fuel includes fossil diesel and biodiesel blended with a replacement rate from 0% to 50%, with a simulation mode of 2200 (rev/min), at a rate of a 25%, 50% and 75% load. In this speed range, the engine has the lowest fuel consumption. The parameters to be evaluated are power, fuel consumption and emissions, based on the proportions of blended biodiesel. The results show that there is a relationship between the proportion of blended biodiesel, injection timing and the parameters of the engine. Specifically, the ratio of the biodiesel blend increases, injection timing tends to move closer to the top dead center (TDC), the tendency reduce engine power, fuel consumption increases, the emissions of CO and soot reduces, while NOx increases.


Author(s):  
Yogesh PALANI ◽  
Chandramohan DEVARAJAN ◽  
Dhanashekar MANICKAM ◽  
Sathish THANIKODI

Sign in / Sign up

Export Citation Format

Share Document