nox removal efficiency
Recently Published Documents


TOTAL DOCUMENTS

29
(FIVE YEARS 12)

H-INDEX

6
(FIVE YEARS 2)

2021 ◽  
Vol 11 (19) ◽  
pp. 8815
Author(s):  
Xiu Xiao ◽  
Yu Guo ◽  
Zongyu Wang ◽  
Wei Zhang ◽  
Jifeng Zhang ◽  
...  

In this paper, an experimental setup was established to study the influence of potassium chloride (KCL) solution as the ground electrode on the nitrogen oxides (NOx) removal efficiency in non-thermal plasma (NTP) generated by dielectric barrier discharging (DBD) reactor. The experimental results show that the KCL solution as the ground electrode has better stability and higher discharge intensity and it is a promising approach to improve NOx removal efficiency. The specific NOx removal efficiency is related to the power frequency, the concentration and temperature of the KCL solution. As the power frequency increases, the NOx removal efficiency first increases and then decreases, and a maximum value is reached at the power frequency of 8 kHz. The NO removal effect is improved as the concentration of the KCL solution increases, especially when the concentration is lower than 0.1 mol/L. Under the same KCL solution concentration and input energy density, the NOx removal efficiency is increased with the solution temperature. In particular, when the power discharge frequency is 8 kHz, the KCL solution concentration is 0.1 mol/L and the solution temperature is 60 °C, the NOx and NO removal efficiency reach 85.82% and 100%, respectively.


2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Irfan Purnawan ◽  
Sutrasno Kartohardjono ◽  
Levana Wibowo ◽  
Annisa Faiza Ramadhani ◽  
Woei Jye Lau ◽  
...  

NOx (NO and NO2) are air toxins that endanger life and represent a hazard to the environment, such as photochemical smog, global warming, acid rain, ozone depletion, and the occurrence of respiratory infections. Some technological strategies to diminish NOx emissions to meet regulations depend on two techniques: the dry process and the wet process. This study applies polyvinylidene fluoride (PVDF) hollow fiber membrane modules as a medium to remove NOx from solutions containing several absorbents such as hydrogen peroxide and nitric acid (H2O2-HNO3) solutions, sodium chlorite and sodium hydroxide (NaClO2-NaOH) solutions, and sodium chlorate and sodium hydroxide (NaClO3-NaOH) solutions. The experimental results showed that the oxidant’s strength influences NOx removal efficiency, where the absorbent solutions containing hydrogen peroxide had the highest removal efficiency as hydrogen peroxide is the most potent oxidant, followed by sodium chlorite and sodium chlorate. The three pairs of absorbents also gave a high NOx removal efficiency (above 90%), which means that all the absorbents used in the study are very potential to be used to diminish NOx via the wet process. NOx removal efficiency at the same feed gas flow rate increased as the number of fiber and absorbent concentrations is increased. However, NOx removal efficiency is reduced as the feed gas flow rate is increased at the same membrane module and absorbent concentration.


2020 ◽  
Vol 719 ◽  
pp. 137459 ◽  
Author(s):  
J.M. Cordero ◽  
R. Hingorani ◽  
E. Jimenez-Relinque ◽  
M. Grande ◽  
R. Borge ◽  
...  

Catalysts ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 208
Author(s):  
Jon A. Onrubia-Calvo ◽  
Beñat Pereda-Ayo ◽  
Juan R. González-Velasco

Diesel engines operate under net oxidizing environment favoring lower fuel consumption and CO2 emissions than stoichiometric gasoline engines. However, NOx reduction and soot removal is still a technological challenge under such oxygen-rich conditions. Currently, NOx storage and reduction (NSR), also known as lean NOx trap (LNT), selective catalytic reduction (SCR), and hybrid NSR–SCR technologies are considered the most efficient control after treatment systems to remove NOx emission in diesel engines. However, NSR formulation requires high platinum group metals (PGMs) loads to achieve high NOx removal efficiency. This requisite increases the cost and reduces the hydrothermal stability of the catalyst. Recently, perovskites-type oxides (ABO3) have gained special attention as an efficient, economical, and thermally more stable alternative to PGM-based formulations in heterogeneous catalysis. Herein, this paper overviews the potential of perovskite-based formulations to reduce NOx from diesel engine exhaust gases throughout single-NSR and combined NSR–SCR technologies. In detail, the effect of the synthesis method and chemical composition over NO-to-NO2 conversion, NOx storage capacity, and NOx reduction efficiency is addressed. Furthermore, the NOx removal efficiency of optimal developed formulations is compared with respect to the current NSR model catalyst (1–1.5 wt % Pt–10–15 wt % BaO/Al2O3) in the absence and presence of SO2 and H2O in the feed stream, as occurs in the real automotive application. Main conclusions are finally summarized and future challenges highlighted.


Author(s):  
Jianjie Li ◽  
Mingliang Zhao ◽  
Ming Zhang ◽  
Xingxing Cheng ◽  
Jingcai Chang ◽  
...  

Abstract Fe/ZSM-5 catalysts were prepared by three kinds of ion exchange methods: aqueous ion-exchange (AI), hydrothermal ion-exchange (HI) and solid-state ion-exchange (SI). Their catalytic activities were tested for NOx reduction by CO in a separated NOx adsorption-desorption process. In this paper, performances of adsorption, reduction and dynamic adsorption-reduction were all investigated. All three catalysts exhibited good reduction activity at above 300 °C. Fe/ZSM-5(SI) exhibited excellent NOx removal efficiency in the dynamic adsorption-reduction experiments. However, in the dynamic process the adsorption efficiency of Fe/ZSM-5(AI) and the reduction efficiency of Fe/ZSM-5(HI) is not very good. The catalysts were further characterized by SEM, BET, XRD, XRF, XPS and TPD. It was found that the Fe content of the Fe/ZSM-5(SI) was the highest. Further, Fe is supported in the form of Fe2O3 particles. Bronsted acid sites were also playing a major role in the high catalytic activity. TPD and in situ DRIFT experiments show that more Fe loading in α acid sites could result in a higher NOx removal efficiency.


Sign in / Sign up

Export Citation Format

Share Document