kadsura coccinea
Recently Published Documents


TOTAL DOCUMENTS

72
(FIVE YEARS 34)

H-INDEX

13
(FIVE YEARS 1)

2022 ◽  
Vol 194 ◽  
pp. 113018
Author(s):  
Yupei Yang ◽  
Yongbei Liu ◽  
Huanghe Yu ◽  
Qingling Xie ◽  
Bin Wang ◽  
...  

BIOCELL ◽  
2022 ◽  
Vol 46 (1) ◽  
pp. 285-296
Author(s):  
JIANFEI GAO ◽  
KANGNING XIONG ◽  
WEIJIE LI ◽  
WEI ZHOU
Keyword(s):  

BIOCELL ◽  
2022 ◽  
Vol 46 (1) ◽  
pp. 285-296
Author(s):  
JIANFEI GAO ◽  
KANGNING XIONG ◽  
WEIJIE LI ◽  
WEI ZHOU
Keyword(s):  

2021 ◽  
Vol 9 ◽  
Author(s):  
Yu-pei Yang ◽  
Yu-qing Jian ◽  
Yong-bei Liu ◽  
Muhammad Ismail ◽  
Qing-ling Xie ◽  
...  

One new 3,4-seco-17,13-friedo-lanostane triterpenoid heilaohuacid A (1), one new 3,4-seco-17,14-friedo-lanostane triterpenoid heilaohuacid B (2), five new 3,4-seco-lanostane triterpenoids heilaohuacids C-D (3–4) and heilaohumethylesters A-C (7–9), one new 3,4-seco-cycloartane triterpenoid heilaohuacid E (5), and one new intact-lanostane triterpenoid heilaohuacid F (6), together with twenty-two known analogues (10–31), were isolated from heilaohu. Their structures were determined using HR-ESI-MS data, 1D and 2D NMR spectra, 13C NMR calculations, and electronic circular dichroism (ECD) calculations. Heilaohuacids A and B (1 and 2) contain a 3,4-seco ring A and unprecedented migration of Me-18 from C-13 to C-17 or C-14 to C-18. This type of lanostane triterpenoid derivatives was rarely reported so far. More importantly, all compounds against inflammatory cytokines IL-6 and TNF-α levels on LPS-induced RAW 264.7 macrophages were evaluated, and compounds 4 and 31 significantly inhibited the release level of IL-6 with IC50 values of 8.15 and 9.86 μM, respectively. Meanwhile, compounds 17, 18, and 31 significantly inhibited proliferation of rheumatoid arthritis-fibroblastoid synovial (RA-FLS) cells in vitro with IC50 values of 7.52, 8.85, and 7.97 μM, respectively.


Molecules ◽  
2021 ◽  
Vol 26 (20) ◽  
pp. 6259
Author(s):  
Tianming Zhao ◽  
Chao Ma ◽  
Guofei Zhu

The chemical composition and biological activities of the essential oils from the leaves, stems, and roots of Kadsura coccinea (K. coccinea) were investigated. The essential oils were extracted by hydro distillation and analyzed by gas chromatography mass spectrometry (GC-MS) and gas chromatography with flame ionization detector (GC-FID). Antioxidant activities of the essential oils were examined with DPPH radical scavenging assay, ABTS cation radical scavenging assay, and ferric reducing antioxidant power assay. Antimicrobial activities were evaluated by determining minimum inhibitory concentrations (MIC) and minimum microbiocidal concentrations (MMC). Acetylcholinesterase and butyrylcholinesterase inhibitory activity of the essential oils were also tested. A total of 46, 44, and 47 components were identified in the leaf, stem, and root oils, representing 95.66%, 97.35%, and 92.72% of total composition, respectively. The major compounds of three essential oils were α-pinene (16.60–42.02%), β-pinene (10.03–18.82%), camphene (1.56–10.95%), borneol (0.50–7.71%), δ-cadinene (1.52–7.06%), and β-elemene (1.86–4.45%). The essential oils were found to have weak antioxidant activities and cholinesterase inhibition activities. The essential oils showed more inhibitory effects against Staphylococcus aureus (S. aureus) than those of other strains. The highest antimicrobial activity was observed in the root oil against S. aureus, with MIC of 0.78 mg/mL. Therefore, K. coccinea essential oils might be considered as a natural antibacterial agent against S. aureus with potential application in food and pharmaceutical industries.


2021 ◽  
Vol 45 ◽  
pp. 57-62
Author(s):  
Huyen Tram Le ◽  
Thu Huong Tran ◽  
Thi Thuy Le ◽  
Van Thong Nguyen ◽  
Tuan Anh Nguyen ◽  
...  
Keyword(s):  

2021 ◽  
Vol 98 ◽  
pp. 104324
Author(s):  
Ding Huang ◽  
Ruhong Ming ◽  
Shaochang Yao ◽  
Liangbo Li ◽  
Rongshao Huang ◽  
...  
Keyword(s):  

Plant Disease ◽  
2021 ◽  
Author(s):  
Guihe Jiang ◽  
Aiming Jiang ◽  
Chunli Fan ◽  
Ji-Guang Wei ◽  
Liyun Ren ◽  
...  

Kadsura coccinea (Lem.) A. C. Smith, an evergreen liana, is widely cultivated in China for its economic importance in traditional medicine. Many phytochemical studies on the stems and roots of K. coccinea have shown numerous biological activities, such as anti-tumor, anti-HIV, and anti-oxidant (Yang et al. 2020). In June 2019, an anthracnose on K. coccinea was observed in a plantation in Longan (23°03´N, 107°54´E), Guangxi province. Disease incidence was up to 30% in a plantation. Its symptoms began as small brown spots that expanded into nearly circular spots (Fig. 1A). To isolate pathogen, diseased leaves were collected. The leaves were sterilized with 75% ethanol for 15 s followed by 2% sodium hypochlorite for 90 s, then rinsed three times in sterilized distilled water, cut into 5 × 5 mm pieces, and placed into potato dextrose agar (PDA) plates. The plates were incubated in an incubator at 25°C in dark for 2–3 days. Fungal colonies with similar morphology of 27 isolates were isolated from the 30 infected tissues. Six representative isolates (YB1 to YB6) were selected to further study their characterization. Fungal colonies were grayish-white, orange-yellow conidial masses could be observed in colonies (Fig. 1C). The mature conidia were colorless and transparent, elliptical, and single-celled, 13.0–21.0 × 4.0–8.0 μm (average 16.92 × 5.92 µm; n =100) (Fig. 1B). The DNA sequences of ribosomal internal transcribed spacer region (ITS), glyceraldehyde-3-phosphate (GAPDH), calmodulin (CAL), actin (ACT), chitin synthase (CHS-1) and β-tubulin (TUB2) were amplified by PCR using the primer pairs ITS1/ITS4, GDF/GDR, CL1C/CL2C, ACT-512F/ACT-783R, CHS-79F/CHS-354R, and T1/Bt2b (Wang et al. 2020), respectively. Sequences were submitted to GenBank (Accession nos. MZ040489 to MZ040494 for ITS, MZ069043 to MZ069048 for GAPDH, MZ069049 to MZ069054 for CAL, MZ069055 to MZ069060 for ACT, MZ069061 to MZ069066 for CHS-1, and MZ069067 to MZ069072 for TUB2). These sequences were 98%–100% identical to that of reference isolates JX010278, JX010019, JX009709, GQ856775, GQ856730, and JX010410 of Colletotrichum siamense CBS 125378 ex-type recorded in GenBank. Phylogenetic analysis of combined ITS, GAPDH, CAL, ACT, CHS-1, TUB2 genes with 16 sequences obtained from GenBank using maximum likelihood method showed that the six isolates clustered with two reference isolates of Colletotrichum siamense as a distinct clade (Fig. 2). Based on morphological characteristics and phylogenetic analysis, six isolates were identified as C. siamense. Pathogenicity tests were performed on young, fully expanded leaves of 1-year seedlings. Every leaf was punctured at 6 points on the right half and 6 points on the left half using a sterile needle. A 10 μl conidial suspension (1×106 conidia/ml) was inoculated on each wound on the left-half leaf and a 10 μl sterile water was inoculated on each wound on the right-half leaf (control). Each treatment was repeated three times. Inoculated leaves were wrapped in plastic bags for 2 days and after removing the bags, plants were maintained in a growth chamber at 28°C, 80% relative humidity, and a 12-h photoperiod. Anthracnose spots formed 2 to 3 days after inoculation, whereas the control leaves remained symptomless. Morphological characters matched the descriptions of C. siamense. The pathogen was previously reported to cause anthracnose on Aloe vera (Azad et al. 2020), postharvest anthracnose in mango (Liu et al. 2017), pod rot in cacao (Serrato-Diaz et al. 2020). To our knowledge, this is the first report of anthracnose on K. coccinea caused by C. siamense in China.


Plants ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 1633
Author(s):  
Joong Suk Jeon ◽  
He Mi Kang ◽  
Ju Ha Park ◽  
Jum Soon Kang ◽  
Yong Jae Lee ◽  
...  

Kadsura coccinea (KC), a beneficial plant for human health, has been used for centuries in China, Thailand, and Korea in folk medicine and food. There is evidence supporting the biological effects of highly bioactive ingredients in KC such as lignans, triterpenoids, flavonoids, phenolic acids, steroids, and amino acids. In this study, we aimed to explore the effects, functions, and mechanisms of the extracts from KC root (KCR), stem (KCS), leaf (KCL), and fruit (KCF) in UVA and UVB-irradiated keratinocytes and α-melanocyte stimulating hormone (α-MSH)-stimulated melanocytes. First, the total polyphenol and flavonoid contents of KCR, KCS, KCL, and KCF and their radical scavenging activities were investigated. These parameters were found to be in the following order: KCL > KCR > KCS > KCF. UVA and UVB-irradiated keratinocytes were treated with KCR, KCS, KCL, and KCF, and keratinocyte viability, LDH release, intracellular ROS production, and apoptosis were examined. Our results demonstrated that KC extracts improved keratinocyte viability and reduced LDH release, intracellular ROS production, and apoptosis in the presence UVA and UVB irradiation. The overall photoprotective activity of the KC extracts was confirmed in the following order: KCL > KCR > KCS > KCF. Moreover, KC extracts significantly decreased the intracellular melanin content and tyrosinase activity in α-MSH-stimulated melanocytes. Mechanistically, KC extracts reduced the protein and mRNA expression levels of tyrosinase, tyrosinase-related protein-1 (TRP-1), and tyrosinase-related protein-2 (TRP-2) in α-MSH-stimulated melanocytes. In addition, these extracts markedly downregulated myophthalmosis-related transcription factor expression and cAMP-related binding protein phosphorylation, which is upstream of the regulation of Tyrosinase, TRP-1, and TRP-2. The overall anti-melanogenic activity of the KC extracts was established in the following order. KCL > KCR > KCS > KCF. Overall, the KC extracts exert photoprotective and anti-melanogenic effects, providing a basis for developing potential skin-whitening and photoprotective agents.


Sign in / Sign up

Export Citation Format

Share Document