simulation results
Recently Published Documents


TOTAL DOCUMENTS

16446
(FIVE YEARS 4708)

H-INDEX

75
(FIVE YEARS 14)

Author(s):  
Nguyen Thai Duong ◽  
Nguyen Quang Duy

<span>Adaptive backstepping control based on disturbance observer and neural network for ship nonlinear active fin system is proposed. One disturbance observer is given to observe the disturbances of the system, by this way, the response time is shorten and the negative impact of disturbance and uncertain elements of the system is reduced. In addition, radial basic function neural network (RBFNN) is proposed to approach the unknown elements in the ship nonlinear active fin system, therefor the system can obtain good roll reduction effectiveness and overcome the uncertainties of the model, the designed controller can maintain the ship roll angle at desired value. Finally, the simulation results are given for a supply vessel to verify the successfulness of the proposed controller.</span>


2022 ◽  
Vol 9 (3) ◽  
pp. 0-0

The acceptance of tele-robotics and teleoperations through networked control system (NCS) is increasing day-by-day. NCS involves the feedback control loop system wherein the control components such as actuators and sensors are controlled and allowed to share their feedback over real time network with distributed users spread geographically. The performance and surgical complications majorly depend upon time delay, packet dropout and jitter induced in the system. The delay of data packet to the receiving side not only causes instability but also affect the performance of the system. In this article, author designed and simulate the functionality of a model-based Smith predictive controller. The model and randomized error estimations are employed through Markov approach and Kalman techniques. The simulation results show a delay of 49.926ms from master controller to slave controller and 79.497ms of delay from sensor to controller results to a total delay of 129.423ms. This reduced delay improve the surgical accuracy and eliminate the risk factors to criticality of patients’ health.


Author(s):  
Sugondo Hadiyoso ◽  
Inung Wijayanto ◽  
Suci Aulia

Mild cognitive impairment (MCI) was a condition beginning before more serious deterioration, leading to Alzheimer’s dementia (AD). MCI detection was needed to determine the patient's therapeutic management. Analysis of electroencephalogram (EEG) coherence is one of the modalities for MCI detection. Therefore, this study investigated the inter and intra-hemispheric coherence over 16 EEG channels in the frequency range of 1-30 Hz. The simulation results showed that most of the electrode pair coherence in MCI patients have decreased compared to normal elderly subjects. In inter hemisphere coherence, significant differences (p&lt;0.05) were found in the FP1-FP2 electrode pairs. Meanwhile, significant differences (p&lt;0.05) were found in almost all pre-frontal area connectivity of the intra-hemisphere coherence pairs. The electrode pairs were FP2-F4, FP2-T4, FP1-F3, FP1-F7, FP1-C3, FP1-T3, FP1-P3, FP1-T5, FP1-O1, F3-O1, and T3-T5. The decreased coherence in MCI patients showed the disconnection of cortical connections as a result of the death of the neurons. Furthermore, the coherence value can be used as a multimodal feature in normal elderly subjects and MCI. It is hoped that current studies may be considered for early detection of Alzheimer’s in a larger population.


2022 ◽  
Vol 65 ◽  
pp. 103499
Author(s):  
A. El Hakoume ◽  
L. Afraites ◽  
A. Laghrib

Author(s):  
Othmane Maakoul ◽  
Hamid El Omari ◽  
Aziza Abid

Our main objective is to evaluate the performance of a new method to optimize the energy management of a production system composed of six cogeneration units using artificial intelligence. The optimization criterion is economic and environmental in order to minimize the total fuel cost, as well as the reduction of polluting gas emissions such as COx, NOx and SOx. First, a statistical model has been developed to determine the power that the cogeneration units can provide. Then, an economic model of operation was developed: fuel consumption and pollutant gas emissions as a function of the power produced. Finally, we studied the energy optimization of the system using genetic algorithms (GA), and contribute to the research on improving the efficiency of the studied power system. The GA has a better optimization performance, it can easily choose satisfactory solutions according to the optimization objectives, and compensate for these defects using its own characteristics. These characteristics make GA have outstanding advantages in iterative optimization. The robustness of the proposed algorithm is validated by testing six cogeneration units, and the obtained simulation results of the proposed system prove the value and effectiveness of GA for efficiency improvement as well as operating cost minimization.


2022 ◽  
Vol 13 (2) ◽  
pp. 0-0

Wireless Multimedia Sensor Networks (WMSNs) have been used in many applications and powerful distributed systems. But the performance of WMSNs is suffering from the occurrence of energy holes. To improve the performance of the network and packet delivery ratio, a Voronoi-Ant colony based Routing (VoR-Ant-R) algorithm is proposed for WMSNs to discover the energy holes and finds the shortest path from the source to destination in the WMSNs even though faces some obstacles. The WMSNs are constructed using the Voronoi structure to bypass energy holes. After bypassing the energy hole in the path; an ACO is introduced to select a neighborhood node for data forwarding. This ACO constructs the shortest optimized path to enhance the performance of the WMSNs. The proposed work is experimentally compared with other algorithms such as IEEABR, EEABR, SC, and BEES. The simulation results show that VoR-Ant-R can increase energy efficiency, success rate, reduces energy consumption, and latency.


Author(s):  
Raed Taleb Al-Zubi ◽  
Abdulraheem Ahmed Kreishan ◽  
Mohammad Qasem Alawad ◽  
Khalid Ahmad Darabkh

<span>In recent years, wireless sensor networks (WSNs) have been considered one of the important topics for researchers due to their wide applications in our life. Several researches have been conducted to improve WSNs performance and solve their issues. One of these issues is the energy limitation in WSNs since the source of energy in most WSNs is the battery. Accordingly, various protocols and techniques have been proposed with the intention of reducing power consumption of WSNs and lengthen their lifetime. Cluster-oriented routing protocols are one of the most effective categories of these protocols. In this article, we consider a major issue affecting the performance of this category of protocols, which we call the intra/inter-cluster event-reporting problem (IICERP). We demonstrate that IICERP severely reduces the performance of a cluster-oriented routing protocol, so we suggest an effective Solution for IICERP (SIICERP). To assess SIICERP’s performance, comprehensive simulations were performed to demonstrate the performance of several cluster-oriented protocols without and with SIICERP. Simulation results revealed that SIICERP substantially increases the performance of cluster-oriented routing protocols.</span>


Author(s):  
Nagireddy Kavya

Abstract: In this paper, we present the design and implementation of Floating point addition and Floating point Multiplication. There are many multipliers in existence in which Floating point Multiplication and Floating point addition offers a high precision and more accuracy for the data representation of the image. This project is designed and simulated on Xilinx ISE 14.7 version software using verilog. Simulation results show area reduction and delay reduction as compared to the conventional method. Keywords: FIR Filter, Floating point Addition, Floating point Multiplication, Carry Look Ahead Adder


2022 ◽  
Vol 11 ◽  
Author(s):  
Yanqiu Liu ◽  
Xiangong Hu ◽  
Mengxiang Chu ◽  
Hongbo Guo ◽  
Jingjing Yu ◽  
...  

X-ray luminescence computed tomography (XLCT) is an emerging hybrid imaging modality in optical molecular imaging, which has attracted more attention and has been widely studied. In XLCT, the accuracy and operational efficiency of an optical transmission model play a decisive role in the rapid and accurate reconstruction of light sources. For simulation of optical transmission characteristics in XLCT, considering the limitations of the diffusion equation (DE) and the time and memory costs of simplified spherical harmonic approximation equation (SPN), a hybrid light transport model needs to be built. DE and SPN models are first-order and higher-order approximations of RTE, respectively. Due to the discontinuity of the regions using the DE and SPN models and the inconsistencies of the system matrix dimensions constructed by the two models in the solving process, the system matrix construction of a hybrid light transmission model is a problem to be solved. We provided a new finite element mesh regrouping strategy-based hybrid light transport model for XLCT. Firstly, based on the finite element mesh regrouping strategy, two separate meshes can be obtained. Thus, for DE and SPN models, the system matrixes and source weight matrixes can be calculated separately in two respective mesh systems. Meanwhile, some parallel computation strategy can be combined with finite element mesh regrouping strategy to further save the system matrix calculation time. Then, the two system matrixes with different dimensions were coupled though repeated nodes were processed according to the hybrid boundary conditions, the two meshes were combined into a regrouping mesh, and the hybrid optical transmission model was established. In addition, the proposed method can reduce the computational memory consumption than the previously proposed hybrid light transport model achieving good balance between computational accuracy and efficiency. The forward numerical simulation results showed that the proposed method had better transmission accuracy and achieved a balance between efficiency and accuracy. The reverse simulation results showed that the proposed method had superior location accuracy, morphological recovery capability, and image contrast capability in source reconstruction. In-vivo experiments verified the practicability and effectiveness of the proposed method.


2022 ◽  
pp. 1-19
Author(s):  
S. Liu ◽  
B. Yan ◽  
R. Liu ◽  
P. Dai ◽  
J. Yan ◽  
...  

Abstract The cooperative guidance problem of multiple inferior missiles intercepting a hypersonic target with the specific impact angle constraint in the two-dimensional plane is addressed in this paper, taking into consideration variations in a missile’s speed. The guidance law is designed with two subsystems: the direction of line-of-sight (LOS) and the direction of normal to LOS. In the direction of LOS, by applying the algebraic graph theory and the consensus theory, the guidance command is designed to make the system convergent in a finite time to satisfy the goal of cooperative interception. In the direction of normal to LOS, the impact angle is constrained to transform into the LOS angle at the time of interception. In view of the difficulty of measuring unknown target acceleration information in real scenarios, the guidance command is designed by utilising a super-twisting algorithm based on a nonsingular fast-terminal sliding mode (NFTSM) surface. Numerical simulation results manifest that the proposed guidance law performs efficiently and the guidance commands are free of chattering. In addition, the overall performance of this guidance law is assessed with Monte Carlo runs in the presence of measurement errors. The simulation results demonstrate that the robustness can be guaranteed, and that overall efficiency and accuracy in intercepting the hypersonic target are achieved.


Sign in / Sign up

Export Citation Format

Share Document