resolution limits
Recently Published Documents


TOTAL DOCUMENTS

358
(FIVE YEARS 45)

H-INDEX

37
(FIVE YEARS 4)

2021 ◽  
Author(s):  
Benjamin Lochocki ◽  
Ksenia Abrashitova ◽  
Johannes F. de Boer ◽  
Lyubov V. Amitonova

2021 ◽  
Author(s):  
Juliette Martin ◽  
Xavier Robert ◽  
Patrice Gouet ◽  
Pierre Falson ◽  
Vincent Chaptal

AbstractDiffraction anisotropy is a phenomenon that impacts more specifically membrane proteins, compared to soluble ones, but the reasons for this discrepancy remained unclear. Often, it is referred to a difference in resolution limits between highest and lowest diffraction limits as a signature for anisotropy. We show in this article that there is no simple correlation between anisotropy and difference in resolution limits, with notably a substantial number of structures displaying various anisotropy with no difference in resolution limits. We further investigated diffraction intensity profiles, and observed a peak centred on 4.9Å resolution more predominant in membrane proteins. Since this peak is in the region corresponding to secondary structures, we investigated the influence of secondary structure ratio. We showed that secondary structure content has little influence on this profile, while secondary structure collinearity in membrane proteins correlate with a stronger peak. Finally, we could further show that the presence of this peak is linked to higher diffraction anisotropy.SynopsisMembrane protein diffraction anisotropy originates from a peak at 4.9 Å resolution in intensity profiles, due to secondary structure collinearity.


Information ◽  
2021 ◽  
Vol 12 (12) ◽  
pp. 501
Author(s):  
Yuanyuan Meng ◽  
Xiyu Liu

Community detection is a significant research field of social networks, and modularity is a common method to measure the division of communities in social networks. Many classical algorithms obtain community partition by improving the modularity of the whole network. However, there is still a challenge in community division, which is that the traditional modularity optimization is difficult to avoid resolution limits. To a certain extent, the simple pursuit of improving modularity will cause the division to deviate from the real community structure. To overcome these defects, with the help of clustering ideas, we proposed a method to filter community centers by the relative connection coefficient between vertices, and we analyzed the community structure accordingly. We discuss how to define the relative connection coefficient between vertices, how to select the community centers, and how to divide the remaining vertices. Experiments on both real and synthetic networks demonstrated that our algorithm is effective compared with the state-of-the-art methods.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
A. B. Mikhalychev ◽  
P. I. Novik ◽  
I. L. Karuseichyk ◽  
D. A. Lyakhov ◽  
D. L. Michels ◽  
...  

AbstractQuantum imaging can beat classical resolution limits, imposed by the diffraction of light. In particular, it is known that one can reduce the image blurring and increase the achievable resolution by illuminating an object by entangled light and measuring coincidences of photons. If an n-photon entangled state is used and the nth-order correlation function is measured, the point-spread function (PSF) effectively becomes $$\sqrt{n}$$ n times narrower relatively to classical coherent imaging. Quite surprisingly, measuring n-photon correlations is not the best choice if an n-photon entangled state is available. We show that for measuring (n − 1)-photon coincidences (thus, ignoring one of the available photons), PSF can be made even narrower. This observation paves a way for a strong conditional resolution enhancement by registering one of the photons outside the imaging area. We analyze the conditions necessary for the resolution increase and propose a practical scheme, suitable for observation and exploitation of the effect.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Taylor H. Newton ◽  
Michael W. Reimann ◽  
Marwan Abdellah ◽  
Grigori Chevtchenko ◽  
Eilif B. Muller ◽  
...  

AbstractVoltage-sensitive dye imaging (VSDI) is a powerful technique for interrogating membrane potential dynamics in assemblies of cortical neurons, but with effective resolution limits that confound interpretation. To address this limitation, we developed an in silico model of VSDI in a biologically faithful digital reconstruction of rodent neocortical microcircuitry. Using this model, we extend previous experimental observations regarding the cellular origins of VSDI, finding that the signal is driven primarily by neurons in layers 2/3 and 5, and that VSDI measurements do not capture individual spikes. Furthermore, we test the capacity of VSD image sequences to discriminate between afferent thalamic inputs at various spatial locations to estimate a lower bound on the functional resolution of VSDI. Our approach underscores the power of a bottom-up computational approach for relating scales of cortical processing.


Author(s):  
Mikhail V. Korzhik

An influence of the various relaxation processes of the electronic excitations causing the scintillation in the crystalline compounds under ionising radiation is analysed. It was found that the intracenter relaxation of electronic excitations in the luminescence ion forms a physical limit for the time resolution of the scintillation detector. The limit of the time resolution, which can be provided when measuring the ionising radiation with a scintillation detector, has been established by simulation. A comparison of the time resolution limits for various errors by the electronic part of the ionising radiation detector is performed. It is shown that inorganic scintillation materials based on single crystals activated by cerium ions have a limit of 10 ps, while self-activated scintillators with low yield and short scintillation kinetics may show results not worse than 20 ps. It has been demonstrated that a further increase in the scintillation yield while keeping the short kinetics in self-activated materials can provide a better time resolution in comparison with Ce-activated materials in future detectors.


Author(s):  
Sheridan B Green ◽  
Frank C van den Bosch ◽  
Fangzhou Jiang

Abstract Several recent studies have indicated that artificial subhalo disruption (the spontaneous, non-physical disintegration of a subhalo) remains prevalent in state-of-the-art dark matter-only cosmological simulations. In order to quantify the impact of disruption on the inferred subhalo demographics, we augment the semi-analytical SatGen dynamical subhalo evolution model with an improved treatment of tidal stripping that is calibrated using the DASH database of idealized high-resolution simulations of subhalo evolution, which are free from artificial disruption. We also develop a model of artificial disruption that reproduces the statistical properties of disruption in the Bolshoi simulation. Using this framework, we predict subhalo mass functions (SHMFs), number density profiles, and substructure mass fractions and study how these quantities are impacted by artificial disruption and mass resolution limits. We find that artificial disruption affects these quantities at the $10-20\%$ level, ameliorating previous concerns that it may suppress the SHMF by as much as a factor of two. We demonstrate that semi-analytical substructure modeling must include orbit integration in order to properly account for splashback haloes, which make up roughly half of the subhalo population. We show that the resolution limit of N-body simulations, rather than artificial disruption, is the primary cause of the radial bias in subhalo number density found in dark matter-only simulations. Hence, we conclude that the mass resolution remains the primary limitation of using such simulations to study subhaloes. Our model provides a fast, flexible, and accurate alternative to studying substructure statistics in the absence of both numerical resolution limits and artificial disruption.


Sign in / Sign up

Export Citation Format

Share Document