winter cover
Recently Published Documents


TOTAL DOCUMENTS

319
(FIVE YEARS 101)

H-INDEX

38
(FIVE YEARS 8)

2022 ◽  
Vol 217 ◽  
pp. 105283
Author(s):  
Andrea Fiorini ◽  
Sara Remelli ◽  
Roberta Boselli ◽  
Paolo Mantovi ◽  
Federico Ardenti ◽  
...  

2022 ◽  
Vol 326 ◽  
pp. 107783
Author(s):  
Coralie Triquet ◽  
Anthony Roume ◽  
Vincent Tolon ◽  
Alexander Wezel ◽  
Aurélie Ferrer

2022 ◽  
Vol 216 ◽  
pp. 105261
Author(s):  
Hong T.T. Phan ◽  
Tomke Susanne Wacker ◽  
Kristian Thorup-Kristensen

2022 ◽  
pp. 1-9
Author(s):  
Alyssa DeVincentis ◽  
Samuel Sandoval Solis ◽  
Sloane Rice ◽  
Daniele Zaccaria ◽  
Richard Snyder ◽  
...  

As fresh water supplies become more unreliable, variable and expensive, the water-related implications of sustainable agriculture practices such as cover cropping are drawing increasing attention from California's agricultural communities. However, the adoption of winter cover cropping remains limited among specialty crop growers who face uncertainty regarding the water use of this practice. To investigate how winter cover crops affect soil water and evapotranspiration on farm fields, we studied three systems that span climatic and farming conditions in California's Central Valley: processing tomato fields with cover crop, almond orchards with cover crop, and almond orchards with native vegetation. From 2016 to 2019, we collected soil moisture data (3 years of neutron hydroprobe and gravimetric tests at 10 field sites) and evapotranspiration measurements (2 years at two of 10 sites) in winter cover cropped and control (clean-cultivated, bare ground) plots during winter months. Generally, there were not significant differences in soil moisture between cover cropped and control fields throughout or at the end of the winter seasons, while evapo-transpirative losses due to winter cover crops were negligible relative to clean-cultivated soil. Our results suggest that winter cover crops in the Central Valley may break even in terms of actual consumptive water use. California growers of high-value specialty crops can likely adopt winter cover cropping without altering their irrigation plans and management practices.


2022 ◽  
pp. 1-9
Author(s):  
Alyssa DeVincentis ◽  
Samuel Sandoval Solis ◽  
Sloane Rice ◽  
Daniele Zaccaria ◽  
Richard Snyder ◽  
...  

As fresh water supplies become more unreliable, variable and expensive, the water-related implications of sustainable agriculture practices such as cover cropping are drawing increasing attention from California's agricultural communities. However, the adoption of winter cover cropping remains limited among specialty crop growers who face uncertainty regarding the water use of this practice. To investigate how winter cover crops affect soil water and evapotranspiration on farm fields, we studied three systems that span climatic and farming conditions in California's Central Valley: processing tomato fields with cover crop, almond orchards with cover crop, and almond orchards with native vegetation. From 2016 to 2019, we collected soil moisture data (3 years of neutron hydroprobe and gravimetric tests at 10 field sites) and evapotranspiration measurements (2 years at two of 10 sites) in winter cover cropped and control (clean-cultivated, bare ground) plots during winter months. Generally, there were not significant differences in soil moisture between cover cropped and control fields throughout or at the end of the winter seasons, while evapo-transpirative losses due to winter cover crops were negligible relative to clean-cultivated soil. Our results suggest that winter cover crops in the Central Valley may break even in terms of actual consumptive water use. California growers of high-value specialty crops can likely adopt winter cover cropping without altering their irrigation plans and management practices.


2021 ◽  
Author(s):  
Lienne R. Sethna ◽  
Todd V. Royer ◽  
Shannon L. Speir ◽  
Matt T. Trentman ◽  
Ursula H. Mahl ◽  
...  

Abstract Agriculture alters the biogeochemical cycling of nutrients such as nitrogen (N), phosphorus (P), and silicon (Si) which contributes to the stoichiometric imbalance among these nutrients in aquatic systems. Limitation of Si relative to N and P can facilitate the growth of non-siliceous, potentially harmful, algal taxa which has severe environmental and economic impacts. Planting winter cover crops can retain N and P on the landscape, yet their effect on Si concentrations and stoichiometry is unknown. We analyzed three years of biweekly concentrations and loads of dissolved N, P, and Si from subsurface tile drains and stream water in two agricultural watersheds in northern Indiana. Intra-annual patterns in Si concentrations and stoichiometry showed that cover crop vegetation growth did not reduce in-stream Si concentrations as expected, although, compared to fallow conditions, winter cover crops increased Si:N ratios to conditions more favorable for diatom growth. To assess the risk of non-siliceous algal growth, we calculated a stoichiometric index to quantify biomass growth facilitated by excess N and P relative to Si. Index values showed a divergence between predicted algal growth and what we observed in the streams, indicating other factors influence algal community composition. The stoichiometric imbalance was more pronounced at high flows, suggesting increased risk of harmful blooms as environmental change increases the frequency and intensity of precipitation in the midwestern U.S. Our data include some of the first measurements of Si within small agricultural watersheds and provide the groundwork for understanding the role of agriculture on Si export and stoichiometry.


2021 ◽  
Vol 16 (191) ◽  
pp. 68-78
Author(s):  
C. S. R. Pitta ◽  
J. A. Bonetti ◽  
A. Lavratti ◽  
A. F. Ribas ◽  
D. D. M. Bhering ◽  
...  

Agriculture ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1035
Author(s):  
Mihkel Are ◽  
Tanel Kaart ◽  
Are Selge ◽  
Endla Reintam

The stability of the soil aggregates is an important soil quality indicator, as it affects the soil’s overall functionality. As the soil aggregates are highly affected by agricultural practices, it is essential to know how crops interact with the aggregation process. Therefore, for obtaining more knowledge, this research was conducted in Estonia in an organic crop rotation field experiment from 2012/2013 through 2015/2016 to study the effects of crops (potato → spring barley undersown with red clover → red clover → winter wheat → pea) under different treatments (TC—control; TW—winter cover crops; TW+M—TW with farmyard manure 40 Mg ha−1 per crop rotation). The results showed that in the topsoil (5–10 cm), the soil water-stable aggregate (WSA) content (determined by the wet sieving method) from highest to lowest was following: pea (61.7%), winter wheat (61.6%), spring barley (61.5%), red clover (59.3%), potato (57.1%); whereas in the subsoil (30–35 cm): potato (50.6%), pea (48.5%), red clover (47.9%), spring barley (47.7%), winter wheat (46.4%). Therefore, potato was a noticeable crop, as among the crops, it had the lowest WSA content in the topsoil, while highest in the subsoil. The results shown gave an assumption that the after-effects of some crops (foremost with pea) were noticeable in the soil properties during the following crop. In the topsoil, the differences between crops were significant among crops just for TW and TW+M treatments. In TW, potato was lower than spring barley and winter wheat, but not significantly lower than pea or red clover. In the subsoil, significant differences between crops were observed for TC and TW treatments: in TC, potato was just significantly greater than red clover (but similar to other crops), and in TW, significantly greater than winter wheat. Furthermore, in the topsoil the soil organic carbon (SOC) content was not significantly affected by crops, and the use of winter cover crops generally increased the SOC content while concurrently decreased the WSA content and the soil maximum water holding capacity. This was probably caused by the additional tillage operations which cancelled out the possible benefits for the soil aggregates. As a consequence of the constantly declining SOC content, caused by the weakened soil aggregates, the plant-available P and K contents, especially in the absence of manure applications, decreased as well, probably due to the combination of fixation and removal of plant biomass. Therefore, it is expected that by continuing this trend, the plant growing conditions decline, which in turn will have a negative effect for the aggregate formation and carbon sequestration, which are essential for plant growth.


Crop Science ◽  
2021 ◽  
Author(s):  
Joanei Cechin ◽  
Maicon Fernando Schmitz ◽  
Jonathan Schwanz Torchelsen ◽  
Miria Rosa Durigon ◽  
Dirceu Agostinetto ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document