drilling data
Recently Published Documents


TOTAL DOCUMENTS

376
(FIVE YEARS 133)

H-INDEX

13
(FIVE YEARS 3)

Author(s):  
K. N. Danilovskii ◽  
Loginov G. N.

This article discusses a new approach to processing lateral scanning logging while drilling data based on a combination of three-dimensional numerical modeling and convolutional neural networks. We prepared dataset for training neural networks. Dataset contains realistic synthetic resistivity images and geoelectric layer boundary layouts, obtained based on true values of their spatial orientation parameters. Using convolutional neural networks two algorithms have been developed and programmatically implemented: suppression of random noise and detection of layer boundaries on the resistivity images. The developed algorithms allow fast and accurate processing of large amounts of data, while, due to the absence of full-connection layers in the neural networks’ architectures, it is possible to process resistivity images of arbitrary length.


2022 ◽  
pp. 1-22
Author(s):  
Salem Al-Gharbi ◽  
Abdulaziz Al-Majed ◽  
Abdulazeez Abdulraheem ◽  
Zeeshan Tariq ◽  
Mohamed Mahmoud

Abstract The age of easy oil is ending, the industry started drilling in remote unconventional conditions. To help produce safer, faster, and most effective operations, the utilization of artificial intelligence and machine learning (AI/ML) has become essential. Unfortunately, due to the harsh environments of drilling and the data-transmission setup, a significant amount of the real-time data could defect. The quality and effectiveness of AI/ML models are directly related to the quality of the input data; only if the input data are good, the AI/ML generated analytical and prediction models will be good. Improving the real-time data is therefore critical to the drilling industry. The objective of this paper is to propose an automated approach using eight statistical data-quality improvement algorithms on real-time drilling data. These techniques are Kalman filtering, moving average, kernel regression, median filter, exponential smoothing, lowess, wavelet filtering, and polynomial. A dataset of +150,000 rows is fed into the algorithms, and their customizable parameters are calibrated to achieve the best improvement result. An evaluation methodology is developed based on real-time drilling data characteristics to analyze the strengths and weaknesses of each algorithm were highlighted. Based on the evaluation criteria, the best results were achieved using the exponential smoothing, median filter, and moving average. Exponential smoothing and median filter techniques improved the quality of data by removing most of the invalid data points, the moving average removed more invalid data-points but trimmed the data range.


2022 ◽  
pp. 1-14
Author(s):  
Salem Al-Gharbi ◽  
Abdulaziz Al-Majed ◽  
Salaheldin Elkatatny ◽  
Abdulazeez Abdulraheem

Abstract Due to high demand for energy, oil and gas companies started to drill wells in remote environments conducting unconventional operations. In order to maintain safe, fast and more cost-effective operations, utilizing machine learning (ML) technologies has become a must. The harsh environments of drilling sites and the transmission setups, are negatively affecting the drilling data, leading to less than acceptable ML results. For that reason, big portion of ML development projects were actually spent on improving the data by data-quality experts. The objective of this paper is to evaluate the effectiveness of ML on improving the real-time drilling-data-quality and compare it to a human expert knowledge. To achieve that, two large real-time drilling datasets were used; one dataset was used to train three different ML techniques: artificial neural network (ANN), support vector machine (SVM) and decision tree (DT), the second dataset was used to evaluate it. The ML results were compared with the results of a real- time drilling data quality expert. Despite the complexity of ANN and good results in general, it achieved a relative root mean square error (RRMSE) of 2.83%, which was lower than DT and SVM technologies that achieved RRMSE of 0.35% and 0.48% respectively. The uniqueness of this work is in developing ML that simulates the improvement of drilling-data- quality by an expert. This research provides a guide for improving the quality of real-time drilling data.


2021 ◽  
Author(s):  
S. H. Al Gharbi ◽  
A. A. Al-Majed ◽  
A. Abdulraheem ◽  
S. Patil ◽  
S. M. Elkatatny

Abstract Due to high demand for energy, oil and gas companies started to drill wells in remote areas and unconventional environments. This raised the complexity of drilling operations, which were already challenging and complex. To adapt, drilling companies expanded their use of the real-time operation center (RTOC) concept, in which real-time drilling data are transmitted from remote sites to companies’ headquarters. In RTOC, groups of subject matter experts monitor the drilling live and provide real-time advice to improve operations. With the increase of drilling operations, processing the volume of generated data is beyond a human's capability, limiting the RTOC impact on certain components of drilling operations. To overcome this limitation, artificial intelligence and machine learning (AI/ML) technologies were introduced to monitor and analyze the real-time drilling data, discover hidden patterns, and provide fast decision-support responses. AI/ML technologies are data-driven technologies, and their quality relies on the quality of the input data: if the quality of the input data is good, the generated output will be good; if not, the generated output will be bad. Unfortunately, due to the harsh environments of drilling sites and the transmission setups, not all of the drilling data is good, which negatively affects the AI/ML results. The objective of this paper is to utilize AI/ML technologies to improve the quality of real-time drilling data. The paper fed a large real-time drilling dataset, consisting of over 150,000 raw data points, into Artificial Neural Network (ANN), Support Vector Machine (SVM) and Decision Tree (DT) models. The models were trained on the valid and not-valid datapoints. The confusion matrix was used to evaluate the different AI/ML models including different internal architectures. Despite the slowness of ANN, it achieved the best result with an accuracy of 78%, compared to 73% and 41% for DT and SVM, respectively. The paper concludes by presenting a process for using AI technology to improve real-time drilling data quality. To the author's knowledge based on literature in the public domain, this paper is one of the first to compare the use of multiple AI/ML techniques for quality improvement of real-time drilling data. The paper provides a guide for improving the quality of real-time drilling data.


2021 ◽  
Author(s):  
Ilya Silvestrov ◽  
Emad Hemyari ◽  
Andrey Bakulin ◽  
Yi Luo ◽  
Ali Aldawood ◽  
...  

Abstract We present processing details of seismic-while-drilling data recently acquired on one of the onshore wells by a prototype DrillCAM system with wireless geophones, top-drive, and downhole vibration sensors. The general flow follows an established practice and consists of correlation with a drillbit pilot signal, vertical stacking, and pilot deconvolution. This work's novelty is the usage of the memory-based near-bit sensor with a significant time drift reaching 30-40 minutes at the end of each drilling run. A data-driven automatic time alignment procedure is developed to accurately eliminate time drift error by utilizing the top-drive acceleration sensor as a reference. After the alignment, the processing flow can utilize the top-drive or the near-bit pilots similarly. We show each processing step's effect on the final data quality and discuss some implementation details.


2021 ◽  
Author(s):  
Mattia Martinelli ◽  
Ivo Colombo ◽  
Eliana Rosa Russo

Abstract The aim of this work is the development of a fast and reliable method for geomechanical parameters evaluation while drilling using surface logging data. Geomechanical parameters are usually evaluated from cores or sonic logs, which are typically expensive and sometimes difficult to obtain. A novel approach is here proposed, where machine learning algorithms are used to calculate the Young's Modulus from drilling parameters and the gamma ray log. The proposed method combines typical mud logging drilling data (ROP, RPM, Torque, Flow measurements, WOB and SPP), XRF data and well log data (Sonic logs, Bulk Density, Gamma Ray) with several machine learning techniques. The models were trained and tested on data coming from three wells drilled in the same basin in Kuwait, in the same geological units but in different reservoirs. Sonic logs and bulk density are used to evaluate the geomechanical parameters (e.g. Young's Modulus) and to train the model. The training phase and the hyperparameter tuning were performed using data coming from a single well. The model was then tested against previously unseen data coming from the other two wells. The trained model is able to predict the Young's modulus in the test wells with a root mean squared error around 12 GPa. The example here provided demonstrates that a model trained with drilling parameters and gamma ray coming from one well is able to predict the Young Modulus of different wells in the same basin. These outcomes highlight the potentiality of this procedure and point out several implications for the reservoir characterization. Indeed, once the model has been trained, it is possible to predict the Young's Modulus in different wells of the same basin using only surface logging data.


2021 ◽  
Author(s):  
Francesco Battocchio ◽  
Jaijith Sreekantan ◽  
Arghad Arnaout ◽  
Abed Benaichouche ◽  
Juma Sulaiman Al Shamsi ◽  
...  

Abstract Drilling data quality is notoriously a challenge for any analytics application, due to complexity of the real-time data acquisition system which routinely generates: (i) Time related issues caused by irregular sampling, (ii) Channel related issues in terms of non-uniform names and units, missing or wrong values, and (iii) Depth related issues caused block position resets, and depth compensation (for floating rigs). On the other hand, artificial intelligence drilling applications typically require a consistent stream of high-quality data as an input for their algorithms, as well as for visualization. In this work we present an automated workflow enhanced by data driven techniques that resolves complex quality issues, harmonize sensor drilling data, and report the quality of the dataset to be used for advanced analytics. The approach proposes an automated data quality workflow which formalizes the characteristics, requirements and constraints of sensor data within the context of drilling operations. The workflow leverages machine learning algorithms, statistics, signal processing and rule-based engines for detection of data quality issues including error values, outliers, bias, drifts, noise, and missing values. Further, once data quality issues are classified, they are scored and treated on a context specific basis in order to recover the maximum volume of data while avoiding information loss. This results into a data quality and preparation engine that organizes drilling data for further advanced analytics, and reports the quality of the dataset through key performance indicators. This novel data processing workflow allowed to recover more than 90% of a drilling dataset made of 18 offshore wells, that otherwise could not be used for analytics. This was achieved by resolving specific issues including, resampling timeseries with gaps and different sampling rates, smart imputation of wrong/missing data while preserving consistency of dataset across all channels. Additional improvement would include recovering data values that felt outside a meaningful range because of sensor drifting or depth resets. The present work automates the end-to-end workflow for data quality control of drilling sensor data leveraging advanced Artificial Intelligence (AI) algorithms. It allows to detect and classify patterns of wrong/missing data, and to recover them through a context driven approach that prevents information loss. As a result, the maximum amount of data is recovered for artificial intelligence drilling applications. The workflow also enables optimal time synchronization of different sensors streaming data at different frequencies, within discontinuous time intervals.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Ahmed Gowida ◽  
Ahmed Farid Ibrahim ◽  
Salaheldin Elkatatny ◽  
Abdulwahab Ali

The least principal stresses of downhole formations include minimum horizontal stress (σmin) and maximum horizontal stress (σmax). σmin and σmax are substantial parameters that significantly affect the design and optimization of the drilling process. These stresses can be estimated using theoretical equations in addition to some field tests, i.e., leak-off test to include the effect of tectonic stress. This approach is associated with many technical and financial issues. Therefore, the objective of this study is to provide a novel machine learning-based solution to estimate these stresses while drilling. First, new models were developed using artificial neural network (ANN) to directly predict σmin and σmax from the drilling data; which are injection rate (Q), standpipe pressure (SPP), weight on bit (WOB), torque (T), and rate of penetration (ROP). Such data are always available while drilling, and hence, no additional cost is required. Actual data from a Middle Eastern field were collected, statistically analyzed, and fed to the models. First, the models’ predictions showed a significant match with the actual stress values with a correlation coefficient (R-value) exceeding 0.90 and a mean absolute average error (MAPE) of 0.75% as a maximum. Second, new empirical equations were generated based on the developed ANN-based models. The new equations were then validated using another unseen dataset from the same field. The predictions had an R-value of 0.98 and 0.93 in addition to MAPE of 0.36% and 0.96% for σmin and σmax models, respectively. The results demonstrated the outperformance of the developed ANN-based equations to estimate the least principal stresses from the drilling data with high accuracy in a timely and economically effective way.


Author(s):  
В. В. Данилов ◽  
Е. А. Романова ◽  
А. М. Салимов ◽  
О. М. Олейников ◽  
М. А. Салимова

Статья посвящена реконструкции древнего рельефа территории Тверского кремля. Использованы данные об отметках поверхности материка, полученные при проведении археологических исследований и геобурения. В результате анализа полученных данных выявлена самая высокая точка кремля, располагавшаяся примерно в центральной части площадки, где в XII-XIII вв. находилась церковь Козьмы и Дамиана, а с 1285 г. - главный храм Твери - Спасо-Преображенский собор. Выявлена подольная часть кремля к северу от холма, значительные понижения площадки кремля к западу и югу. Очевидно, древний рельеф обусловил границы крепости, а также расположение главного храма города. The article presents the results of archaeological together with geological drilling data analysis on ancient relief of Tver kremlin territory. The research shows that a sandy hill was situated in the centre of future kremlin, where the church of Kozma and Damian, then the Cathedral of the Our Saviour Transfiguration were built. The ancient surface of the kremlin territory considerably descended to the north, west and south. Evidently the ancient relief of that ground determined the situation of kremlin's fortification line.


Sign in / Sign up

Export Citation Format

Share Document