load flow analysis
Recently Published Documents


TOTAL DOCUMENTS

346
(FIVE YEARS 109)

H-INDEX

19
(FIVE YEARS 3)

2022 ◽  
pp. 293-324
Author(s):  
Saad Mohammad Abdullah ◽  
Ashik Ahmed

In this chapter, a hybrid bare bones fireworks algorithm (HBBFWA) is proposed and its application in solving the load flow problem of islanded microgrid is demonstrated. The hybridization is carried out by updating the positions of generated sparks with the help of grasshopper optimization algorithm (GOA) mimicking the swarming behavior of grasshoppers. The purpose of incorporating GOA with bare bones fireworks algorithm (BBFWA) is to enhance the global searching capability of conventional BBFWA for complex optimization problems. The proposed HBBFWA is applied to perform the load flow analysis of a modified IEEE 37-Bus system. The performance of the proposed HBBFWA is compared against the performance of BBFWA in terms of computational time, convergence speed, and number of iterations required for convergence of the load flow problem. Moreover, standard statistical analysis test such as the independent sample t-test is conducted to identify statistically significant differences between the two algorithms.


2021 ◽  
Vol 5 (2) ◽  
pp. 80-87
Author(s):  
Muhammad Ruswandi Djalal ◽  
Makmur Saini ◽  
A.M Shiddiq Yunus

Power flow analysis in an electric power system is an analysis that reveals the performance of an electric power system and the flow of power (active and reactive) for certain conditions when the system is working. The analysis was carried out using the ETAP 16.00 software, the method used was the newton rapshon by taking a case study of normal conditions. From the results of the study, it can be seen that the power flow that occurs in each channel of the 150 kV system in the South Sulawesi system. The amount of active power (MW) that occurs during normal conditions based on the simulation is 1730.87 MW, where the active power is the largest, which is 171 MW from BUS15_TLASA to BUS13_SGMNSA. For the voltage data, there is a slight comparison of the voltage during the simulation compared to the PLN data.


Energies ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 8549
Author(s):  
Rudy Gianto

At present, the penetration of wind-driven electric generators or wind power plants (WPPs) in electric power systems is getting more and more extensive. To evaluate the steady state performances of such power systems, developing a valid WPP model is therefore necessary. This paper proposes a new method in modeling the most popular type of WPP, i.e., DFIG (doubly fed induction generator)-based WPP, to be used in power system steady state load flow analysis. The proposed model is simple and derived based on the formulas that calculate turbine mechanical power and DFIG power. The main contribution of the paper is that, in contrast to the previous models where the DFIG power factor has been assumed to be constant at unity, the constant voltage model proposed in this paper allows the power factor to vary in order to keep the voltage at the desired value. Another important contribution is that the proposed model can be implemented in both sub-synchronous and super-synchronous conditions (it is to be noted that most of the previous models use two different mathematical models to represent the conditions). The case study is also presented in the present work, and the results of the study confirm the validity of the proposed DFIG model.


Author(s):  
Rudy Gianto ◽  
Ade Elbani

As they are more efficient in extracting wind energy, variable speed wind power plants (WPPs) are currently replacing the fixed speed WPPs. One possible way to achieve a variable speed WPP is by using a squirrel cage induction generator (SCIG) with full-scale power electronic converter (PEC). In fact, as its cost is relatively lower, the application of SCIG-based variable speed WPP is gaining popularity nowadays. To be able to perform proper analyses (including the load flow analysis) of an electric power system, valid and accurate modeling of the system components is very important. This paper discusses the steady state model of SCIG-based variable speed WPP in power factor control mode for a load flow analysis of an electric power distribution system. The model was developed based on formulas that calculate the turbine mechanical power input and WPP electrical power output. Integration of the proposed model in load flow analysis is also discussed and presented in this paper.


Author(s):  
Prafull Bhumarkar

Abstract: Electric vehicles are the demand of the current scenario to fight with the increasing levels of pollution. Electric vehicles operate by getting power from the battery which needs to be charged after a particular duration. Battery swapping stations are used for providing the optimal power for charging these batteries. An algorithm known as Particle swarm optimization can be used to find the optimal cost of these battery swapping stations. The project presents an expository study about ParticleSwarm Optimization and thus various factors related to it. Keywords: Battery Swapping Station, Battery Charging Station, Load flow Analysis, Particle Swarm Optimization


2021 ◽  
Vol 3 (12) ◽  
Author(s):  
Ademola Abdulkareem ◽  
T. E. Somefun ◽  
C. O. A. Awosope ◽  
O. Olabenjo

AbstractThe present situation of power generation in Nigeria obviously represents a challenge to our ability for rethinking the delivery of energy at maximum efficiency. Previous research on the existing Nigerian 330-kV network grid, recommended that the network be transformed from radial to ring because of high losses inherent in it and the voltage insecurity. In this study, the existing 330-kV network was reconfigured based on the identified regions mapped out for upgrade to form a ringed 750-kV super grid. The bus voltages of some of the buses in the existing 330-kV were upgraded to 750-kV and new transmission lines added to create an integrated super grid with a ring structure as compared to the radial nature of the existing 330-kV grid. These proposed buses have been selected for upgrade based on the fact that they are positioned in critical areas within the topology of the grid that transforms the existing radial structure to a ring one. The method is also cheaper than making the entire network a 750-kV system. Load-flow analysis was carried out on the existing 330-kV Nigerian Grid and the proposed Nigerian 750-kV integrated into the existing grid using Newton–Raphson algorithm. The results analysis of the new network revealed a significant reduction of 30.2% power loss. This was validated using the code-based MATLAB and Power World Simulation model-based software. Contingency analysis was also carried out on both grids using the Power World Simulator. The study revealed that the 750-kV super grid was able to mitigate the losses experienced on the existing grid significantly with better voltage profiles in all the buses. It also revealed that the new network (330-kV and 750-kV integrated) performed better to the single line contingency analysis with less violations occurring and no unsolvable cases.


Author(s):  
Donald Eloebhose ◽  
Nelson Ogbogu

The study of evacuation of power from the power plants in Rivers State Nigeria, connecting to the 330kV transmission network of the Transmission Company of Nigeria (TCN). The Power World Simulator Educational version was used in the modelling and simulation of the electric power grid. The study of load flow analysis, short circuit, transient and N-1 contingency analysis and their effect on the 330 kV/132kV transmission bus connected to the existing power plants in Rivers State Nigeria namely; Rivers IPP (180MW), Afam III (265.6MW), Afam IV & V (351.00 MW) and Afam VI G. S (650.00 MW) was carried out. From the short circuit study, it is observed that when a bus is faulted with a 3-phase fault, the three-phase voltages of the system drastically become zero in all the phases. The other buses of the network experience an increase in voltage and all the buses fed have the same effect as the bus under fault, though the effect is felt more on the buses. However, with the introduction of substation splitting at Afam III and ongoing Afam IV substations, the short circuit level will be reduced by 15%; leading to improvement in the overall system stability.


2021 ◽  
pp. 219-232
Author(s):  
Dipu Mistry ◽  
Bishaljit Paul ◽  
Chandan Kumar Chanda

Sign in / Sign up

Export Citation Format

Share Document