honey bee health
Recently Published Documents


TOTAL DOCUMENTS

107
(FIVE YEARS 57)

H-INDEX

20
(FIVE YEARS 5)

Pathogens ◽  
2022 ◽  
Vol 11 (1) ◽  
pp. 77
Author(s):  
Giovanni Cilia

Honey bee health is a very important topic that has recently raised the interest of researchers [...]


Apidologie ◽  
2021 ◽  
Author(s):  
Erik Tihelka ◽  
John Hafernik ◽  
Brian V. Brown ◽  
Christopher Quock ◽  
Andrew G. Zink ◽  
...  

AbstractApocephalus borealis is a parasitoid of hymenopterans native to North America that also attacks introduced honey bees (Apis mellifera). Parasitism by this species has been associated with infested bees absconding the hive and dying outside. The flies can also harbour viral infections and nosematosis. Recently, nucleotide sequences identical to A. borealis were reported from bulk screenings of honey bees from Belgium and South Korea, although no adult flies have been collected. To predict the potential invasion risk of A. borealis across the world, we constructed a MaxEnt species distribution model based on occurrence data from North America submitted to the citizen science project ZomBee Watch (zombeewatch.org) and from museum specimens. The results have shown that extensive parts of Europe, the Mediterranean Basin, Asia Minor, southern Africa, eastern Asia, Australasia, and North and South America have high degrees of climatic suitability for invasion, suggesting that the fly could establish in these regions. The potential invasion range is expected to stay similar under different climate change scenarios. We discuss the status of A. borealis as an invasive species and measures that can be taken to reduce the risk of its introduction outside of North America. Our results highlight A. borealis as a potential threat to honey bee health worldwide that requires urgent attention of international veterinary bodies to prevent its spread.


Insects ◽  
2021 ◽  
Vol 12 (12) ◽  
pp. 1051
Author(s):  
Petr Mráz ◽  
Marian Hýbl ◽  
Marek Kopecký ◽  
Andrea Bohatá ◽  
Irena Hoštičková ◽  
...  

Western honey bee (Apis mellifera) is one of the most important pollinators in the world. Thus, a recent honey bee health decline and frequent honey bee mass losses have drawn attention and concern. Honey bee fitness is primarily reduced by pathogens, parasites, and viral load, exposure to pesticides and their residues, and inadequate nutrition from both the quality and amount of food resources. This study evaluated the prevalence of the most common honey bee pathogens and viruses in different habitats across the Czech Republic. The agroecosystems, urban ecosystems, and national park were chosen for sampling from 250 colonies in 50 apiaries. Surprisingly, the most prevalent honey bee pathogens belong to the family Trypanosomatidae including Lotmaria passim and Crithidia mellificae. As expected, the most prevalent viruses were DWV, followed by ABPV. Additionally, the occurrence of DWV-B and DWV-C were correlated with honey bee colony mortality. From the habitat point of view, most pathogens occurred in the town habitat, less in the agroecosystem and least in the national park. The opposite trend was observed in the occurrence of viruses. However, the prevalence of viruses was not affected by habitat.


Bee World ◽  
2021 ◽  
pp. 1-3
Author(s):  
Nor Chejanovsky ◽  
Orlando Yañez ◽  
Anne Dalmon

2021 ◽  
Vol 11 (22) ◽  
pp. 10732
Author(s):  
Dawn L. Boncristiani ◽  
James P. Tauber ◽  
Evan C. Palmer-Young ◽  
Lianfei Cao ◽  
William Collins ◽  
...  

Western honey bees (Apis mellifera), a cornerstone to crop pollination in the U.S., are faced with an onslaught of challenges from diseases caused by parasites, pathogens, and pests that affect this economically valuable pollinator. Natural products (NPs), produced by living organisms, including plants and microorganisms, can support health and combat disease in animals. NPs include both native extracts and individual compounds that can reduce disease impacts by supporting immunity or directly inhibiting pathogens, pests, and parasites. Herein, we describe the screening of NPs in laboratory cage studies for their effects on honey bee disease prevention and control. Depending on the expected activity of compounds, we measured varied responses, including viral levels, honey bee immune responses, and symbiotic bacteria loads. Of the NPs screened, several compounds demonstrated beneficial activities in honey bees by reducing levels of the critical honey bee virus deformed wing virus (DWV-A and-B), positively impacting the gut microbiome or stimulating honey bee immune responses. Investigations of the medicinal properties of NPs in honey bees will contribute to a better understanding of their potential to support honey bee immunity to fight off pests and pathogens and promote increased overall honey bee health. These investigations will also shed light on the ecological interactions between pollinators and specific floral food sources.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ben W. Rowland ◽  
Stephen P. Rushton ◽  
Mark D. F. Shirley ◽  
Mike A. Brown ◽  
Giles E. Budge

AbstractHoney bee colony health has received considerable attention in recent years, with many studies highlighting multifactorial issues contributing to colony losses. Disease and weather are consistently highlighted as primary drivers of colony loss, yet little is understood about how they interact. Here, we combined disease records from government honey bee health inspections with meteorological data from the CEDA to identify how weather impacts EFB, AFB, CBP, varroosis, chalkbrood and sacbrood. Using R-INLA, we determined how different meteorological variables influenced disease prevalence and disease risk. Temperature caused an increase in the risk of both varroosis and sacbrood, but overall, the weather had a varying effect on the six honey bee diseases. The risk of disease was also spatially varied and was impacted by the meteorological variables. These results are an important step in identifying the impacts of climate change on honey bees and honey bee diseases.


2021 ◽  
Vol 1 ◽  
Author(s):  
Hannah J. Penn ◽  
Michael Simone-Finstrom ◽  
Sarah Lang ◽  
Judy Chen ◽  
Kristen Healy

Varroa mite-vectored viruses such as Deformed wing virus (DWV) are of great concern for honey bee health as they can cause disease in individuals and increase colony mortality. Two genotypes of DWV (A and B) are prevalent in the United States and may have differential virulence and pathogenicity. Honey bee genetic stocks bred to resist Varroa mites also exhibit differential infection responses to the Varroa mite-vectored viruses. The goal of this project was to determine if interactions between host genotype could influence the overall infection levels and dissemination of DWV within honey bees. To do this, we injected DWV isolated from symptomatic adult bees into mite-free, newly emerged adult bees from five genetic stocks with varying levels of resistance to Varroa mites. We measured DWV-A and DWV-B dissemination among tissues chosen based on relevance to general health outcomes for 10 days. Injury from sham injections did not increase DWV-A levels but did increase DWV-B infections. DWV injection increased both DWV-A and DWV-B levels over time with significant host stock interactions. While we did not observe any differences in viral dissemination among host stocks, we found differences in virus genotype dissemination to different body parts. DWV-A exhibited the highest initial levels in heads and legs while the highest initial levels of DWV-B were found in heads and abdomens. These interactions underscore the need to evaluate viral genotype and tissue specificity in conjunction with host genotype, particularly when the host has been selected for traits relative to virus-vector and virus resistance.


Insects ◽  
2021 ◽  
Vol 12 (11) ◽  
pp. 987
Author(s):  
Robert Brodschneider ◽  
Elfriede Kalcher-Sommersguter ◽  
Sabrina Kuchling ◽  
Vincent Dietemann ◽  
Alison Gray ◽  
...  

A diverse supply of pollen is an important factor for honey bee health, but information about the pollen diversity available to colonies at the landscape scale is largely missing. In this COLOSS study, beekeeper citizen scientists sampled and analyzed the diversity of pollen collected by honey bee colonies. As a simple measure of diversity, beekeepers determined the number of colors found in pollen samples that were collected in a coordinated and standardized way. Altogether, 750 beekeepers from 28 different regions from 24 countries participated in the two-year study and collected and analyzed almost 18,000 pollen samples. Pollen samples contained approximately six different colors in total throughout the sampling period, of which four colors were abundant. We ran generalized linear mixed models to test for possible effects of diverse factors such as collection, i.e., whether a minimum amount of pollen was collected or not, and habitat type on the number of colors found in pollen samples. To identify habitat effects on pollen diversity, beekeepers’ descriptions of the surrounding landscape and CORINE land cover classes were investigated in two different models, which both showed that both the total number and the rare number of colors in pollen samples were positively affected by ‘urban’ habitats or ‘artificial surfaces’, respectively. This citizen science study underlines the importance of the habitat for pollen diversity for bees and suggests higher diversity in urban areas.


Sign in / Sign up

Export Citation Format

Share Document