end distance
Recently Published Documents


TOTAL DOCUMENTS

209
(FIVE YEARS 45)

H-INDEX

21
(FIVE YEARS 3)

2021 ◽  
Vol 2045 (1) ◽  
pp. 012015
Author(s):  
G Tang ◽  
X N Wu ◽  
P Sun ◽  
C T Yang

Abstract This paper focuses on the shear resistance of the bolted connection between steel plate and bamboo curtain plywood. From the fifteen groups of specimens, the performance grade, bolt diameter and end distance of bolts have an influence on the ultimate bearing capacity of joints and the yield load of joints and the yield load is 65%∼75% of the ultimate load. The initial stiffness of the node increases with the bolt diameter increasing. Provide certain materials and theoretical references for bamboo in the future design and research.


Polymers ◽  
2021 ◽  
Vol 13 (16) ◽  
pp. 2749
Author(s):  
Emmanuel N. Skountzos ◽  
Katerina S. Karadima ◽  
Vlasis G. Mavrantzas

Detailed molecular dynamics (MD) simulations are employed to study how the presence of adsorbed domains and nanoparticle bridging chains affect the structural, conformational, thermodynamic, and dynamic properties of attractive polymer nanocomposite melts in the semi-dilute regime. As a model system we have chosen an unentangled poly(ethylene glycol) (PEG) matrix containing amorphous spherical silica nanoparticles with different diameters and at different concentrations. Emphasis is placed on properties such as the polymer mass density profile around nanoparticles, the compressibility of the system, the mean squared end-to-end distance of PEG chains, their orientational and diffusive dynamics, the single chain form factor, and the scattering functions. Our analysis reveals a significant impact of the adsorbed, interfacial polymer on the microscopic dynamic and conformational properties of the nanocomposite, especially under conditions favoring higher surface-to-volume ratios (e.g., for small nanoparticle sizes at fixed nanoparticle loading, or for higher silica concentrations). Simultaneously, adsorbed polymer chains adopt graft-like conformations, a feature that allows them to considerably extend away from the nanoparticle surface to form bridges with other nanoparticles. These bridges drive the formation of a nanoparticle network whose strength (number of tie chains per nanoparticle) increases substantially with increasing concentration of the polymer matrix in nanoparticles, or with decreasing nanoparticle size at fixed nanoparticle concentration. The presence of hydroxyl groups at the ends of PEG chains plays a key role in the formation of the network. If hydroxyl groups are substituted by methoxy ones, the simulations reveal that the number of bridging chains per nanoparticle decreases dramatically, thus the network formed is less dense and less strong mechanically, and has a smaller impact on the properties of the nanocomposite. Our simulations predict further that the isothermal compressibility and thermal expansion coefficient of PEG-silica nanocomposites are significantly lower than those of pure PEG, with their values decreasing practically linear with increasing concentration of the nanocomposite in nanoparticles.


2021 ◽  
Author(s):  
Magnus Kjaergaard

Proteins and protein assemblies often tether interaction partners to strengthen interactions, to regulate activity through auto-inhibition or -activation, or to boost enzyme catalysis. Tethered reactions are regulated by the architecture of tether, which define an effective concentration of the interactors. Effective concentrations can be estimated theoretically for simple linkers via polymer models, but there is currently no general method for estimating effective concentrations for complex linker architectures consisting of both flexible and folded domains. We describe how effective concentrations can be estimated computationally for any protein linker architecture by defining a realistic conformational ensemble. We benchmark against prediction from a worm-like chain and values measured by competition experiments, and find minor differences likely due to excluded volume effects. Systematic variation of the properties of flexible and folded segments show that the effective concentration is mainly determined by the combination of the total length of flexible segments and the distance between termini of the folded domains. We show that a folded domain in a disordered linker can increase the effective concentration beyond what can be achieved by a fully disordered linker by focusing the end-to-end distance at the appropriate spacing. This suggest that complex linker architecture may have advantages over simple flexible linker, and emphasize that annotation as a linker should depend on the molecular context.


Polymers ◽  
2021 ◽  
Vol 13 (14) ◽  
pp. 2243
Author(s):  
Jiali Qu ◽  
Yi Gao ◽  
Wantai Yang

In this paper, we developed a reactive molecular dynamics (RMD) scheme to simulate the Self-Stable Precipitation (SP) polymerization of 1-pentene and cyclopentene (C5) with maleic anhydride (MAn) in an all-atom resolution. We studied the chain propagation mechanism by tracking the changes in molecular conformation and analyzing end-to-end distance and radius of gyration. The results show that the main reason of chain termination in the reaction process was due to intramolecular cyclic entanglement, which made the active center wrapped in the center of the globular chain. After conducting the experiment in the same condition with the simulation, we found that the distribution trend and peak value of the molecular-weight-distribution curve in the simulation were consistent with experimental results. The simulated number average molecular weight (Mn) and weight average molecular weight (Mw) were in good agreement with the experiment. Moreover, the simulated molecular polydispersity index (PDI) for cyclopentene reaction with maleic anhydride was accurate, differing by 0.04 from the experimental value. These show that this model is suitable for C5–maleic anhydride self-stable precipitation polymerization and is expected to be used as a molecular weight prediction tool for other maleic anhydride self-stable precipitation polymerization system.


2021 ◽  
Vol 9 ◽  
Author(s):  
Pavel Castro-Villarreal ◽  
J. E. Ramírez

The conformational states of a semiflexible polymer enclosed in a volume V:=ℓ3 are studied as stochastic realizations of paths using the stochastic curvature approach developed in [Rev. E 100, 012503 (2019)], in the regime whenever 3ℓ/ℓp>1, where ℓp is the persistence length. The cases of a semiflexible polymer enclosed in a cube and sphere are considered. In these cases, we explore the Spakowitz–Wang–type polymer shape transition, where the critical persistence length distinguishes between an oscillating and a monotonic phase at the level of the mean-square end-to-end distance. This shape transition provides evidence of a universal signature of the behavior of a semiflexible polymer confined in a compact domain.


BioResources ◽  
2021 ◽  
Vol 16 (3) ◽  
pp. 5106-5117
Author(s):  
In-Hwan Lee ◽  
Yo-Jin Song ◽  
Soon-Il Hong

To improve the connecting strength of larch timbers, tensile shear test specimens were fabricated, and their connecting shear strength performance was examined. The control specimens consisted of larch timber reinforced with steel plate. These were compared with similar specimens in which the wood had been reinforced with carbon fiber reinforced polymer (CFRP). The reinforced specimens were fabricated in three types depending on the position of the CFRP reinforcement in the wooden part. All specimens were fabricated in two end distance types, depending on the bolt insertion position. The end distances examined were 60 mm (5D) and 84 mm (7D). The maximum connecting strength and the yield shear strength of each type were not different according to the CFRP reinforcement position. The reinforced specimens had an average connecting strength and yield shear strength that was 24% to 29% higher than the control specimens. The CFRP-reinforced specimens with an end distance of 5D had an average connecting strength and an average yield shear strength that that was 70% and 26% higher, respectively, than non-reinforced 7D specimens. The yield shear strength was predicted by measuring the bearing strengths of the larch timber samples and CFRP-reinforced timber samples. The predicted yield shear strength matched the measured yield shear strength.


2021 ◽  
pp. 136943322110179
Author(s):  
R.Z. Yang ◽  
Y. Xiao

This paper reports tensile and compressive test results of bolted glubam (glued laminated bamboo) connections. The tensile tests were carried out with two types of specimens designed for tensile loadings in the longitudinal and transverse directions in relevance to the orientations of the bidirectional bamboo strips (fibers). In each direction, the specimens were further divided into nine groups according to different combination conditions of end and edge spacings. Compressive tests were executed for three groups of bolted glubam connections, with varying thickness of the main board and bolting conditions. The tensile experiments show that the failure of the specimens is strongly influenced by the loading directions. Recommended end distance and side distance are provided, whereas the load carrying capacity is analyzed. Based on the compressive testing results, failure modes and load displacement relationships are analyzed, in which the yield bearing capacity is shown to be close to that given by the equations in existing design specifications for timber structure.


Materials ◽  
2021 ◽  
Vol 14 (10) ◽  
pp. 2577
Author(s):  
Samuele Raccosta ◽  
Fabio Librizzi ◽  
Alistair M. Jagger ◽  
Rosina Noto ◽  
Vincenzo Martorana ◽  
...  

α1-Antitrypsin is a protease inhibitor belonging to the serpin family. Serpin polymerisation is at the core of a class of genetic conformational diseases called serpinopathies. These polymers are known to be unbranched, flexible, and heterogeneous in size with a beads-on-a-string appearance viewed by negative stain electron microscopy. Here, we use atomic force microscopy and time-lapse dynamic light scattering to measure polymer size and shape for wild-type (M) and Glu342→Lys (Z) α1-antitrypsin, the most common variant that leads to severe pathological deficiency. Our data for small polymers deposited onto mica and in solution reveal a power law relation between the polymer size, namely the end-to-end distance or the hydrodynamic radius, and the polymer mass, proportional to the contour length. We use the scaling concepts of polymer physics to assess that α1-antitrypsin polymers are random linear chains with a low persistence length.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Zhaoyan Cui ◽  
Liuhui Tu ◽  
Ming Xu ◽  
Zhongfan Chen ◽  
Qingfeng Xu

The dowel-type connection is widely applied in timber and bamboo structures. It is ambiguous regarding the calculation method of engineered bamboo connections completely referred to the timber design codes. The steel-to-laminated bamboo dowel connections with slotted-in steel plate tests were conducted to investigate the mechanical performance under tension based on the ASTM-D5652-15. The effects of the thickness, dowel diameter, and end distance on the yield load, ultimate load, initial stiffness, and ductility of the connections were studied. The difference in the yield load for different end distance is negligible. With the same thickness of the connections, the lower the thickness to dowel diameter, the larger the load-carrying capacity. The three typical yield modes and corresponding load-displacement curves of the connections are observed. By considering the rigid-plastic model, the theoretical equation for the connections is proposed and proven to fit well with the experimental results. It presents a better prediction for the load-carrying capacity of steel-to-laminated bamboo dowel connections with slotted-in steel plate.


Sign in / Sign up

Export Citation Format

Share Document