metamaterial absorber
Recently Published Documents


TOTAL DOCUMENTS

1638
(FIVE YEARS 711)

H-INDEX

68
(FIVE YEARS 18)

Author(s):  
John Bosco John Paul ◽  
Aruldas Shobha Rekh

<span>A circular ring-shaped metamaterial (CRM) absorber was designed to harvest radio frequency (RF) energy in the ultra-wideband (UWB) frequency band applications. The proposed metamaterial unit cell features a circular shaped structure, with rectangular strip lines connected in the form of a cross leaving a square shaped slot at center. The unit cell dimensions are 15×15×1.6 mm. The absorber was etched on a low cost FR4 substrate having a dielectric constant of 4.4. Ansys high frequency structure simulator (HFSS) software was used for simulation and the analysis were carried out for unit cell, 2×2, 3×3, and 4×4 array structures. The absorber parameters plotted are absorption characteristics and reflection characteristics. Also, the metamaterial parameters (μeff) and (εeff) are also retrieved from the absorber parameters and analyzed. From the analysis, the values (μeff) and (εeff) were found to be negative, leaving refractive index also negative (n&lt;0), which proved the metamaterial property. The proposed CRM absorber showed good absorption characteristics of more than 80% and also metamaterial property in the entire UWB band (4-13 GHz). Hence the absorber proves to be a good candidate in powering low power sensors/microcontrollers for internet of things (IoT) applications.</span>


2022 ◽  
Author(s):  
Wenhan Zhao ◽  
Junqiao Wang ◽  
Ran Li ◽  
Bin Zhang

Abstract In this paper, a dual-band metamaterial absorber (MMA) with wide-angle and high absorptivity is proposed. The MMA consists of two silver layers separated by a dielectric layer. Its top resonant element is constituted by two concentric ring resonators connected with four strips. Based on electromagnetic field simulation, the proposed MMA has two narrow absorption peaks with an absorption rate of 99.9% at 711 nm and 99.8% at 830 nm, and the corresponding line width of the two absorption peaks are only 9.7 nm and 9.8 nm. The dual-band MMA shows high absorptivity under wide incident angles. The simulated field pattern shows that dual-band perfect absorption is the combined result of the interaction of two concentric ring resonators and unit cell coupling. In addition, the hexapole plasmon mode can be observed at the outer ring at one absorption peak. The narrow plasmon resonance has a potential application in optical sensing, and can be used to measure the concentration of aqueous glucose with two frequency channels. The proposed MMA with high absorptivity is simple to manufacture, and has other potential applications, such as narrow-band filters, energy storage device, and so on.


2022 ◽  
Vol 54 (2) ◽  
Author(s):  
Hagar Hamdy ◽  
Ghada Yassin Abdel-Latif ◽  
M. El-Agamy ◽  
H. A. El-Mikati ◽  
Mohamed Farhat O. Hameed ◽  
...  

2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Mohammad Lutful Hakim ◽  
Touhidul Alam ◽  
Mohamed S. Soliman ◽  
Norsuzlin Mohd Sahar ◽  
Mohd Hafiz Baharuddin ◽  
...  

AbstractMetamaterial absorber (MMA) is now attracting significant interest due to its attractive applications, such as thermal detection, sound absorption, detection for explosive, military radar, wavelength detector, underwater sound absorption, and various sensor applications that are the vital part of the internet of things. This article proposes a modified square split ring resonator MMA for Ku-band sensing application, where the metamaterial structure is designed on FR-4 substrate material with a dielectric constant of 4.3 and loss tangent of 0.025. Perfect absorption is realized at 14.62 GHz and 16.30 GHz frequency bands, where peak absorption is about 99.99% for both frequency bands. The proposed structure shows 70% of the average absorption bandwidth of 420 MHz (14.42–14.84 GHz) and 480 MHz (16.06–16.54 GHz). The metamaterial property of the proposed structure is investigated for transverse electromagnetic mode (TEM) and achieved negative permittivity, permeability, and refractive index property for each absorption frequency band at 0°, 45°, and 90° polarization angles. Interference theory is also investigated to verify the absorption properties. Moreover, the permittivity sensor application is investigated to verify the sensor performance of the proposed structure. Finally, a comparison with recent works is performed, which shows that the proposed MMA can be a good candidate for Ku-band perfect absorber and sensing applications.


2022 ◽  
Author(s):  
Muhammad Amin ◽  
Saleh Abdullah Basamed ◽  
Ahmed Salem Qniqoon ◽  
Faisal Aied Alshabibi ◽  
Saleh Mohammed Ba Raean ◽  
...  

Abstract A pyramidal shaped metamaterial absorber (PMA) supports broadband and polarization independent resonant absorption at optical frequencies. The PMA is designed by stack of alternative plasmonic/dielectric multilayers. These nanoplasmonic pyramids offers resonant absorption characteristics at wide range of optical frequencies. The optimized PMA structure allows 76% spectral absorption and nearly perfect absorption (over 90%) at several bands between range of 400 nm – 1500 nm wavelength. These light absorption characteristics of PMA are useful for photodetection, thermal imaging, thermal emitters, and solar cells etc.


Author(s):  
Han Wu ◽  
Shijun Ji ◽  
Ji Zhao ◽  
Zhiyou Luo ◽  
Handa Dai

2022 ◽  
Author(s):  
Liansheng Wang ◽  
Dongyan Xia ◽  
Quanhong Fu ◽  
Xueyong Ding ◽  
Yuan Wang

Abstract Based on PIN diode and resistive film, a dual/single wideband switchable metamaterial absorber at low frequency is presented in this paper. Its absorption is over 90% from 0.8GHz to 1.5GHz and from 4.2GHz to 5.2GHz while the PIN diode operates in forward biased condition. On the contrary, with the PIN diode acting in reverse biased condition, the above 90% absorption occurs from 1.1GHz to 3.2GHz. The surface current distributions at the absorption frequencies are monitored to explain the reason of wideband absorption. The simulation results show that the absorption property of the metamaterial absorber is polarization-sensitive. The metamaterial absorber possesses the advantages of simple structure, wideband, dual/single band, and switchable performance.


2022 ◽  
Author(s):  
Ben-Xin Wang ◽  
Yangkuan Wu ◽  
Wei Xu ◽  
Zhuchuang Yang ◽  
Liming Lu ◽  
...  

A quad-band near-perfect terahertz absorber employing an asymmetric metamaterial element is demonstrated.


2022 ◽  
Vol 71 (2) ◽  
pp. 3905-3920
Author(s):  
Ismail Hossain ◽  
Md Samsuzzaman ◽  
Mohd Hafiz Baharuddin ◽  
Norsuzlin Binti Mohd Sahar ◽  
Mandeep Singh Jit Singh ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document