thermomechanical testing
Recently Published Documents


TOTAL DOCUMENTS

40
(FIVE YEARS 5)

H-INDEX

6
(FIVE YEARS 1)

2022 ◽  
pp. 1-11
Author(s):  
Stephen B. Driscoll

Abstract This article addresses some established protocols for characterizing thermoplastics and whether they are homogeneous resins, alloyed, or blended compositions or highly modified thermoplastic composites. It begins with a discussion on characterizing mechanical, rheological, and thermal properties of polymer. This is followed by a section describing molecular weight determination using viscosity measurements. Next, the article discusses the use of cone and plate and parallel plate geometries in melt rheology. It then reviews the processes involved in the analysis of thermoplastic resins by chromatography. Finally, the article covers three operations of thermoanalysis, namely differential scanning calorimetry, thermogravimetric analysis, and thermomechanical testing.


2021 ◽  
pp. 93-101
Author(s):  
Євген Олександрович Неманежин ◽  
Валерій Миколайович Івко ◽  
Юрій Іванович Торба

The subject of this article is the methods of research and evaluation of the properties of turbine blades of a cooled structure under thermomechanical loading. The purpose of the article is to review the world achievements of leading enterprises and research institutions in the issue of fatigue tests of turbine blades under complex loading (cyclic temperature exposure, dynamic and static loading), as well as an overview of the state of this topic at SE "Ivchenko-Progress" and suggestions for its further studying. As a result of the analysis of publications and scientific articles, it can be concluded that specialized research institutes and leading aircraft engine-building enterprises from the end of the twentieth century are studying the properties of turbine blades in the conditions of their operation as part of an engine. In world practice, there are calculated and experimental methods for thermomechanical testing of turbine blades. These tests are aimed at determining the most damaging loads, establishing the flight cycle modes at which these loads are recorded. As a result, it was found that the greatest threat to the strength of the turbine blades is carried by transient modes of engine operation, which are short in time (measured in seconds), but at which there is a change in the parameters of the temperature field, loads from axial and centrifugal forces. And it is the cycling of these parameters that leads to a decrease in the cyclic durability of the turbine blades, especially of the cooled structure (the presence of perforations, internal cooling channels, and other structural elements leads to a complication of the volumetric stress state of the blades). The article analyzes various crystallographic structures of blades and their relationship with the volumetric stress state; examples of studies that were carried out at SE "Ivchenko-Progress" and their results are given, which emphasize the need for further experiments in the field of assessing strength characteristics under complex cyclic loading. An example of an installation for testing blade joints and samples of gears is considered, which can be adapted for testing blades with three-component loading (temperature, dynamic loads, and imitation of the effect of centrifugal forces). It is concluded that when using exclusively computational methods, it is impossible to reliably estimate the level of stresses and their distribution since the calculations are limited by the boundary conditions, which are set according to the capabilities of a particular computational model. Summing up, it can be noted that it is advisable to start assessing the strength of blades under thermomechanical loading with several series of tests of samples of blade material to study the effect of temperature and power cycles of loads, the effect of the orientation of the load vector concerning the crystallographic orientation of the blade. It is noted that tests of full-scale blades under thermomechanical loading are also important since the features of the volumetric stress state of the material during real operation of the blades as part of an engine are not reproduced during testing of samples. The above entails the development of methods and specialized installations for thermomechanical testing.


Author(s):  
Elena Ravera ◽  
Melis Sutman ◽  
Lyesse Laloui

Understanding the behaviour of soil-structure interfaces is critical for addressing the analysis and design of energy geostructures. In this study, the interface failure mechanism of energy piles (where a shear band is detached from the surrounding soil that behaves under oedometric conditions) is experimentally analysed in laboratory for saturated conditions. The choice of material (clayey soil and concrete), temperature range, and stress level is based on conditions that are likely to be encountered in practice. Specifically, cyclic thermal tests under constant vertical effective stress in oedometric conditions as well as constant normal stiffness (CNS) interface direct shear tests (in which samples have been subjected to thermal cycles between 10 and 40 °C) are presented. From a practical perspective, the results show very low volumetric strain variations and negligible effects on shear strength. The volumetric aspects do not appear to have significant impact on the shear resistance of the interfaces against cyclic thermal loads. Fundamental insight on the effects of thermal cycles on the concrete-soil interface behaviour which are relevant to energy piles are presented. In addition, the proposed interpretation procedure provides a basis for the standardisation of thermomechanical testing in geotechnical engineering.


2020 ◽  
Vol 117 (29) ◽  
pp. 16864-16871 ◽  
Author(s):  
Mohamed Elhebeary ◽  
Tristan Harzer ◽  
Gerhard Dehm ◽  
M. Taher A. Saif

Understanding deformation mechanisms in silicon is critical for reliable design of miniaturized devices operating at high temperatures. Bulk silicon is brittle, but it becomes ductile at about 540 °C. It creeps (deforms plastically with time) at high temperatures (∼800 °C). However, the effect of small size on ductility and creep of silicon remains elusive. Here, we report that silicon at small scales may deform plastically with time at lower temperatures (400 °C) above a threshold stress. We achieve this stress by bending single-crystal silicon microbeams using an in situ thermomechanical testing stage. Small size, together with bending, localize high stress near the surface of the beam close to the anchor. This localization offers flaw tolerance, allowing ductility to win over fracture. Our combined scanning, transmission electron microscopy, and atomic force microscopy analysis reveals that as the threshold stress is approached, multiple dislocation nucleation sites appear simultaneously from the high-stressed surface of the beam with a uniform spacing of about 200 nm between them. Dislocations then emanate from these sites with time, lowering the stress while bending the beam plastically. This process continues until the effective shear stress drops and dislocation activities stop. A simple mechanistic model is presented to relate dislocation nucleation with plasticity in silicon.


2020 ◽  
Vol 787 (12) ◽  
pp. 34-39
Author(s):  
L.A. Abdrakhmanova ◽  
◽  
K.R. Khuziakhmetova ◽  
R.K. Nizamov ◽  
V.G. Khozin ◽  
...  

A comparison of small doses (up to 0.7 mass part) of impact strength modifiers of foreign and domestic production in polyvinylchloride-based compositions is given. Domestic acrylicnitrile- butadiene styrene modifiers (ABS) were used. The developed shock-resistant polyvinylchloride compositions in the presence of ABS elastifier have high melt fluidity, which has a beneficial effect on the recyclability. Changes in supramolecular structure were estimated from thermomechanical testing and electron microscopy data for both unfilled and filled PVC samples. Thermomechanical analysis showed that the presence of ABS modifier had a favorable effect on the technological properties of PVC-based samples. Electron-microscopic images indicate that in unfilled PVC samples, the heterogeneous PVC structure is expressed in the presence of ABS copolymer in comparison with foreign acrylic modifiers. When the compositions are filled with micro-heterogeneous structure in dispersion medium, the filler-polymer is formed by chalk particles, while ABS elasticifier is at the phase interface. Due to the peculiarities of the structure ABS has a higher degree of “fixation” on the surface of the chalk particles in comparison with the basic compositions containing acrylic modifiers, which with increasing chalk concentration leads to lower wear and tear on the top of the forming equipment.


Author(s):  
Janet Hurst

Advanced gas turbine engine designs continue to push into regimes of higher operating temperatures and increased pressures. Materials capable of functioning under these extreme conditions have been sought by both government and industry. As part of its mission, the NASA Transformational Tools and Technologies (TTT) Project, under the auspices of NASA’s Aeronautics Research Mission Directorate (ARMD), has been pursuing high temperature materials development with the performance goal of 2700°F (1482°C) operation. This goal has evolved into a focused three year Technology Challenge which is nearing its conclusion. This challenge problem has sought to develop high temperature materials for turbine engines which will enable a 6% reduction in fuel burn for commercial aircraft as compared to the current generation. This ambitious effort has included ceramic matrix composite (CMC) compositions, architectures and processing as well as environmental barrier coating compositions (EBC) and processing routes. It has included collaborators and materials suppliers from both industry and academia. The development and validation of thermomechanical models and computational tools for design, analysis, and life prediction have been an important part of this effort. Evaluation of CMC/EBCs included various aspects of thermomechanical testing from coupon testing for strength and creep resistance, to materials evaluation under conditions similar to aspects of engine operation. Simulated engine testing of airfoil subcomponents in a P&W test rig is the final evaluation step following years of materials development. As this three year Technical Challenge concludes, plans are under development for continued environmental durability investigation of CMC/EBC systems accompanied by validated durability modeling.


2018 ◽  
Vol 174 ◽  
pp. 509-514 ◽  
Author(s):  
Cristina Prieto ◽  
Camila Barreneche ◽  
Mònica Martínez ◽  
Luisa F. Cabeza ◽  
A. Inés Fernández

2017 ◽  
Vol 133 ◽  
pp. 520-527 ◽  
Author(s):  
Zhengkai Xu ◽  
C.J. Hyde ◽  
A. Thompson ◽  
R.K. Leach ◽  
I. Maskery ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document