2219 aluminum alloy
Recently Published Documents


TOTAL DOCUMENTS

108
(FIVE YEARS 53)

H-INDEX

14
(FIVE YEARS 6)

2022 ◽  
Vol 149 ◽  
pp. 107796
Author(s):  
Na Qi ◽  
Leilei Wang ◽  
Yanqiu Zhao ◽  
Shuhao Tian ◽  
Xiaohong Zhan

2022 ◽  
Vol 8 ◽  
Author(s):  
Feng Qin ◽  
Chunbo Zhang ◽  
Jun Zhou ◽  
Kai Xu ◽  
Qi Wang ◽  
...  

In recent years, studying the weldability of a dissimilar metal hybrid structure, with the potential to make full use of their unique benefits, has been a research hotspot. In this article, inertia friction welding was utilized to join Φ130 forged ring of 2219 aluminum alloy with 304 stainless steel. Optical observation (OM), electron back scattering diffraction (EBSD), and scanning electron microscopy (SEM) were utilized to examine the joint microstructure in depth. Depending on the research, a significant thermal–mechanical coupling effect occurs during welding, resulting in inadequate recrystallization on aluminum-side thermo-mechanically affected zone (TMAZ) and forming zonal features. The crystal orientation and grain size of each TMAZ region reflect distinct differences. On the joint faying surface, the growth of intermetallic compounds (IMCs) is inhibited by a fast cooling rate and metallurgical bonding characteristics were found depending on the discontinuous distribution of IMCs. The average joint tensile strength can reach 161.3 MPa achieving 92.2% of 2219-O; fracture occurs on aluminum-side base metal presenting ductile fracture characteristics.


2021 ◽  
Author(s):  
Xiaohong Lu ◽  
Jinhui Qiao ◽  
Junyu Qian ◽  
Shixuan Sun ◽  
Steven Y. Liang

Abstract The influence of welding parameters on temperature distribution in plunging and dwelling phase of friction stir welding (FSW) medium thickness 2219 aluminum alloy is blank. Improper selection of welding parameters will result in uneven temperature distribution along the thickness of the weldment, which will lead to welding defects and ultimately affect the mechanical properties of the weldment. To realize the prediction of temperature distribution and achieve the optimization of welding parameters, a simulation model of FSW 18mm thick 2219 aluminum alloy is built based on DEFORM. The validity of the simulation model is verified by temperature measurement experiments. With the minimum temperature difference in the core area of the weldment as target value, and weldable temperature range of 2219 aluminum alloy as constraint conditions, orthogonal experiments are conducted considering the rotational speed, the press amount, the tool tilt angle, the plunging traverse speed and the dwelling time. The results of variance analysis show that the rotational speed and the dwelling time are significant factors affecting temperature field during plunging and dwelling phase. Through single factor simulation, the welding parameters in plunging and dwelling phase are optimized. This study provides a reference for realizing high-quality welding of a heavy rocket fuel tank.


2021 ◽  
Author(s):  
Xiaohong Lu ◽  
Yihan Luan ◽  
Xiangyue Meng ◽  
Yu Zhou ◽  
Ning Zhao ◽  
...  

Abstract Friction stir welding (FSW) is a solid-state jointing technology, which has the advantages of high joint strength, low residual stress aXnd small deformation after welding. During the process of FSW, the welding temperature has an important effect on the quality of the weldment. Therefore, the heat generation model of FSW of medium thickness 2219 aluminum alloy is established based on the friction heat generation at the interface between the tool and the workpiece and the plastic deformation heat generation of the weldment material near the tool. The heat transfer model is set under the premise of considering heat conduction, thermal convection, and thermal radiation. Using JMatPro technology, the temperature-related material parameters of 2219 aluminum alloy are calculated based on the material composition, and the heat generation model is imported into the ABAQUS simulation software based on the DFLUX subroutine, and the establishment of the FSW thermodynamic model is realized. The effectiveness of the model is verified by FSW experiments. The thermodynamic model takes into account both heat generation (friction heat generation and plastic deformation heat generation) and heat transfer (heat conduction, thermal convection and thermal radiation), so it has a high prediction accuracy. Based on the FSW thermodynamic model, the influence of welding parameters on temperature distribution is explored, subsequently the influence of welding temperature on mechanical properties of welded joint are also studied. The research can provide guidance for predicting and characterizing the temperature distribution and the improvement of mechanical performance of FSW.


2021 ◽  
Author(s):  
Hai Gong ◽  
Hua Tang ◽  
Tao Zhang ◽  
Fei Dei ◽  
Xiaolong Liu ◽  
...  

Abstract The large quenched residual stress of large-scale aluminum alloy ring component induces severe deformation in the subsequent maching process. The conventional methods for reduction of residual stress (such as stepwise cold pressing and bulging) have little effect in the residual stress reduction for large-scale ring component and will induce inhomogeneous stress distribution. In this paper, roll bending process is adopted to reduce the quenched residual stress of 2219 aluminum alloy super-large ring. The numerical model of roll bending process was established, and the evolution and distribution of stress and strain after roll bending were studied. The influence of roll winding number on the uniformity of stress and strain was analyzed. The results show that the arch-shaped quenched residual stress of the ring changes to N-shaped distribution from inside to outside after roll bending process. The value of the residual stress reduces from ±180MPa in quenched state to the value within ±50MPa in roll bended state. With the increase of roll winding number, the stress uniformity is improved, but the stress reduction amplitude is basically the same. By analyzing the elastic-plastic strain distribution characteristics and strain springback law of the ring after roll bending, the formation mechanism of N-shaped residual stress distribution after roll bending is revealed.


Sign in / Sign up

Export Citation Format

Share Document