neem seed oil
Recently Published Documents


TOTAL DOCUMENTS

97
(FIVE YEARS 34)

H-INDEX

10
(FIVE YEARS 1)

2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Waleed Al-Marzooqi ◽  
Sobhy M. Sallam ◽  
Othman Alqaisi ◽  
Hani M. El-Zaiat

Abstract Neem (Azadirachta indica) belongs to Meliaceae family, represented mainly by trees, and widely cultivated and adapted in many tropical regions. The objective of this study was to evaluate the effect of increasing doses of neem seed oil (NSO) on ruminal methane (CH4) formation, diet degradability, and fermentation characteristics 24 h of in vitro incubation. Treatments were randomly designed to four doses of NSO supplemented to the basal diet (0, 20, 40, or 60 ml/kg DM). Increasing NSO dose resulted in a quadratic decrease (P < 0.05) in net gas (expressed as ml/g DM and ml/g TDOM) and CH4 (expressed as ml/g TDNDF) production, while CH4 (expressed as ml/g TDOM), acetate and propionate proportions decreased linearly confirming a dose-related effect. A quadratic increase in TDOM and linear increase (P = 0.023) in DNDF, NH3-N concentrations, and total protozoal counts were observed. However, a linear increase (P = 0.009) was found in the ruminal butyrate proportion and partitioning factor as dietary NSO supplementation increased. In conclusion, dietary NSO supplementation mediated some desirable fermentation patterns, reducing ruminal NH3-N concentration and CH4 production with some adverse effects on fiber degradability. However, practical research under long-term conditions is required for further investigation.


2021 ◽  
Vol 913 (1) ◽  
pp. 012075
Author(s):  
A H Prianto ◽  
Budiawan ◽  
Y Yulizar ◽  
P Simanjuntak

Abstract Biopesticides are environmentally friendly solutions used for pest control management. This is a feature of Neem (Azadirachta indica) seed oil and tar, which provides a synergistic effect on the bioactivity of pyroligneous acid, and both are known to have bioactive compounds. Therefore, the purpose of this study was to evaluate the effect of neem seed oil and tar on pyroligneous acid from rice husks in conventional emulsion form, and their efficacy on the polyphagous insect Spodoptera litura. Neem seed oil was added at concentrations of 10, 20, 30, and 40%, while the concentration of tar was 0.5, 1.0, and 2.0%. The conventional emulsion formed was then characterized using a digital microscope. The addition of neem seed oil and tar were able to increase the antifeedant activity of pyroligneous acid by 63.6 % while both neem oil and tar by 72.6 %. The 2.0% tar formulation (N4PT2) showed the highest antifeedant activity against S.litura (97.9 %) and had the smallest droplets size ranges (2.90 - 24.16 µm). The addition of tar tends to reduce the droplet size of neem oil and increase antifeedant activity.


Author(s):  
Anusha P

Abstract: The consumption of edible oil is very high in the country and still the indigenous production does not meet the demand and considerable amount of edible oil is imported. Also, it is not advisable to divert these sources for biodiesel production. On the other hand, the non-edible oil resources could be a solution for biodiesel production. Non-edible oil from the plant seeds is the most promising alternative fuel for internal combustion engine because it is renewable, environment friendly, non-toxic, biodegradable has no sulphur and aromatics, has favourable combustion value and higher cetane number. Extensive work has been done on the transesterification of non-edible oils; however, no significant work has been done on the optimization of transesterification process, oil characterization and fuel analysis of most of the non-edible seed oils. Low cost and abundantly found non-edible oils such as Neem oil could be a better option for biodiesel processing. In the present work, optimization of transesterification process and analysis of biodiesel from non-edible oil was done; based on optimized protocol for biodiesel production from Neem seed oil converted into fatty acid methyl esters (FAME) through base catalyzed trans esterification using an optimum ratio of 1:6 (Oil : Methanol) at 600C. Biodiesel from these sources was analyzed for qualitative and quantitative characterization by using, GC-MS and FT-IR techniques. Based on qualitative and quantitative analysis of biodiesel, it is concluded that the biodiesel from these species can be feasible, cost effective and environment friendly. Keywords: Neem oil, Biodiesel, Tran’s esterification, GC-MS, and FT-IR.


2021 ◽  
Vol 12 (3) ◽  
pp. 242-247
Author(s):  
Toyese Oyegoke ◽  
Kazeem Ajadi Ibraheem

Promoting the green technology campaign that would actualize a biorefinery establishment and would promote cleaner fuel production and air in our environment. This study carried out kinetics studies of biodiesel production over a mixed oxide, Ca-Mg-O catalyst, providing relevant kinetics parameters. This study indicated that biodiesel production is a zero-order reaction, a process independent of the concentration. The results obtained from this study confirm the activation energy, Ea, of the reaction to be 406.53 J/mol, while the pre-exponential factor A was found to be 0.01618 1/min (or 0.9 1/h). Other are kinetics models that were developed for the prediction of the reaction kinetics for the production process is also reported in this study. The findings reported in this study would go a long way to facilitate the modeling, simulation, and design of the biodiesel production process.


2021 ◽  
Vol 11 (5) ◽  
pp. 33-46
Author(s):  
T. Loganathan ◽  
A. Barathinivas ◽  
C. Soorya ◽  
S. Balamurugan ◽  
T. G. Nagajothi ◽  
...  

Azadirachtin (AZA) is the most abundant bioactive secondary metabolite (BASM) in neem seed oil extract (NSOE) of Azadirachta indica A. Juss. AZA is localised in different parts of the plant (seeds, fruits, flowers, leaves, stem, bark and root) however, with varying degree of concentration. It has been documented that maximum concentration of AZA is present to the tune of 48000 μg g-1 in the seeds. It has been established that the environmental conditions determines the overall content and composition of BASM in different parts of the plant. Neem plant parts are most commonly used as therapeutic agents in remote villages in India for its ethnomedicinal therapeutic potentials; however, its physicochemical, druggable and pharmacological properties inadequately described. In the present study an attempt has been made to evaluate the physicochemical, druggable and pharmacological properties of Azadirachtin in NSOE of A. indica from ADMET perspectives. Keywords: NEEM; Azadirachta indica; Azadirachtin; Pharmacoinformatics; ADMET; Drug-Likeness; Toxicology


2021 ◽  
Vol 4 (1) ◽  
pp. 15
Author(s):  
Ardi Zulfikar Muchlis

Neem plant is used as plant-based insecticide because all parts of the plant have insecticides activities. The utilization of neem plants as plant-based insecticides is generally only in the seed parts, but the extraction of neem seed extract has not been used because it is considered as waste. The utilization of neem seed cake as a natural insectiside is one way to recycle neem seed cake which is known to contain active ingredients of neem seed oil. Apart from its use as an insecticide, neem seed cake can also be used as an organic fertilizer. This study aimed to determine the effect of application of various doses of neem seed cake to A. gossypii on chili plants. The experiment used a randomized block design with 7 treatments and 4 replications. The treatments included control, neem seed cake doses of 25 gr, 50 gr, 75 gr, 100 gr, 125 gr, and a comparative treatment of carbofuran active ingredients. A. gossypii imago were introduced in 20 red chili plants per plant. The results showed the application of a dose of 50 gr of neem seed cake per polybag effectively suppressed A. gossypii populations and gave the best effect on some chili plant growth characters such as leaf chlorophyll content, plant height, leaf hardness of chili plant and levels of N element absorbed.


2021 ◽  
Vol 18 (1) ◽  
pp. 55-62
Author(s):  
J.B. Hussein ◽  
J.O.Y. Ilesanmi ◽  
H.A. Yahuza ◽  
I. Nkama

The effects of extraction methods and time of storage on the yield and qualities of neem seed oil were investigated. Three extraction methods: cold water, hot water, and n-hexane were used while the extracted oils were stored at room temperature for six months. The yield, chemical properties, qualitative and quantitative phytochemical analysis of the fresh and stored oils were evaluated at every two-month interval using standard methods. The results showed that n-hexane gave the highest oil yield (62 %), followed by hot water (49 %), and cold water (42 %). The chemical properties ranged as follows; peroxide value: (7.02–25.56, 6.30–26.76 and 8.99–24.16 Meq/kg), saponification value: (133.95–245.26, 114.09–288.09 and 141.11–250.12 mg KOH/g oil), iodine value: (51.69–6.98, 56.73–7.88 and 54.87–9.51 mg/wij’s) and acid value: (18.01–55.99, 11.34–85.12 and 14.62–56.88 mg KOH/g oil) for cold water, hot water, and n-hexane respectively. The qualitative phytochemical analysis indicated the presence of flavonoids, coumarins, terpenoids, triterpenoid, and steroid contents. Conclusively, the extraction methods and storage time affect the yield and qualities of the extracted neem seed oil, while the chemical and phytochemical results revealed that the extracted oils were good for both medical and industrial applications. Keywords:  Neem seeds, oils, extraction methods, storage time, chemical and phytochemical properties


2021 ◽  
Vol 2021 ◽  
pp. 1-7
Author(s):  
Olive Aidoo ◽  
Noble Kuntworbe ◽  
Fredrick William Akuffo Owusu ◽  
Deryl Nii Okantey Kuevi

As one of the killer diseases in the world, malaria contributes to child mortality and global death annually. As a result, many reactive mechanisms have evolved to control and repel mosquitoes. The use of synthetic mosquito repellents with N,N-Diethyl-meta-toluamide (DEET) is one of the popular interventions despite its dermatological limitations such as skin irritations. Ethnobotanical reviews have identified that the adoption of natural repellents promises high repellence on mosquitoes with minimal side effects compared with synthetic ones. However, this has received little attention in modern pharmaceutical literature. This research is focused on the formulation of a natural mosquito repellent from the oil extracted from Azadirachta indica (A. Juss). The oil cream was formulated in concentrations of 10% v / w , 12.5% v / w , 15% v / w , 17.5% v / w , and 20% v / w using an in vitro evaluation approach. Pharmacopoeia characteristics of the cream such as pH, viscosity, spreadability, and organoleptic properties were carried out to verify acidity, permeation, and flow properties of the formulated cream. The spreadability rate was inversely proportional to the concentration of the cream in terms of oil content falling from 1.24 gm/s to 0.84 gm/s from concentrations 10% v / w to 20% v / w correspondingly. Skin irritation tests, however, indicated traces of irritation at 20% v / w . Repellency properties of the cream revealed a lasting effect on the mosquitoes, although this was dependent on concentration levels. Formulations of 17.5% v / w and 20% v / w neem seed oil cream had an equal repellency effect of 87.5%, whereas the synthetic repellent had a repellency of 75% within a justifiable time frame for all the formulations. This work shows that plant-based mosquito repellents promise a healthier approach in controlling mosquito bites, protecting the skin, and preventing malaria.


Sign in / Sign up

Export Citation Format

Share Document