termination criteria
Recently Published Documents


TOTAL DOCUMENTS

84
(FIVE YEARS 22)

H-INDEX

9
(FIVE YEARS 2)

2022 ◽  
Vol 3 (1) ◽  
pp. 1-20
Author(s):  
Stuart M. Harwood ◽  
Dimitar Trenev ◽  
Spencer T. Stober ◽  
Panagiotis Barkoutsos ◽  
Tanvi P. Gujarati ◽  
...  

The variational quantum eigensolver (VQE) is a hybrid quantum-classical algorithm for finding the minimum eigenvalue of a Hamiltonian that involves the optimization of a parameterized quantum circuit. Since the resulting optimization problem is in general nonconvex, the method can converge to suboptimal parameter values that do not yield the minimum eigenvalue. In this work, we address this shortcoming by adopting the concept of variational adiabatic quantum computing (VAQC) as a procedure to improve VQE. In VAQC, the ground state of a continuously parameterized Hamiltonian is approximated via a parameterized quantum circuit. We discuss some basic theory of VAQC to motivate the development of a hybrid quantum-classical homotopy continuation method. The proposed method has parallels with a predictor-corrector method for numerical integration of differential equations. While there are theoretical limitations to the procedure, we see in practice that VAQC can successfully find good initial circuit parameters to initialize VQE. We demonstrate this with two examples from quantum chemistry. Through these examples, we provide empirical evidence that VAQC, combined with other techniques (an adaptive termination criteria for the classical optimizer and a variance-based resampling method for the expectation evaluation), can provide more accurate solutions than “plain” VQE, for the same amount of effort.


Author(s):  
BISHOKSAN KAFLE ◽  
GRAEME GANGE ◽  
PETER J. STUCKEY ◽  
PETER SCHACHTE ◽  
HARALD SØNDERGAARD

Abstract Precondition inference is a non-trivial problem with important applications in program analysis and verification. We present a novel iterative method for automatically deriving preconditions for the safety and unsafety of programs. Each iteration maintains over-approximations of the set of safe and unsafe initial states, which are used to partition the program’s initial states into those known to be safe, known to be unsafe and unknown. We then construct revised programs with those unknown initial states and iterate the procedure until the approximations are disjoint or some termination criteria are met. An experimental evaluation of the method on a set of software verification benchmarks shows that it can infer precise preconditions (sometimes optimal) that are not possible using previous methods.


2021 ◽  
Author(s):  
mehmet bulut

This study focused on the development of a system based on evolutionary Algorithms to obtain the optimum parameters of the fuzzy controller to increase the convergence speed and accuracy of the controller. The aim of the study is to design fuzzy controller without expert’s knowledge by using evolutionary genetic algorithms and carry out on a DC motor. The design is based on optimization of rule bases of fuzzy controller. In the learning stage, the obtained rule base fitness values are measured by working the rule base on the controller. The learning stage is repeated the termination criteria. The proposed fuzzy controller is performed on the dc motor from a PC program using a interface circuit.<div>Note : This article has been accepted for publication in a future issue of ELECTRICA journal, it is now in the early view. </div><div>Citation information: </div><div>M. Bulut, "Optimal Adjustment of Evolutionary Algorithm-based Fuzzy Controller for Driving Electric Motor with Computer Interface", Electrica, August 5, 2021. DOI: 10.5152/electrica.2021.21033.</div>


2021 ◽  
Vol 53 (1) ◽  
Author(s):  
Jeremie Vandenplas ◽  
Mario P. L. Calus ◽  
Herwin Eding ◽  
Mathijs van Pelt ◽  
Rob Bergsma ◽  
...  

Abstract Background The preconditioned conjugate gradient (PCG) method is the current method of choice for iterative solving of genetic evaluations. The relative difference between two successive iterates and the relative residual of the system of equations are usually chosen as a termination criterion for the PCG method in animal breeding. However, our initial analyses showed that these two commonly used termination criteria may report that a PCG method applied to a single-step single nucleotide polymorphism best linear unbiased prediction (ssSNPBLUP) is not converged yet, whereas the solutions are accurate enough for practical use. Therefore, the aim of this study was to propose two termination criteria that have been (partly) developed in other fields, but are new in animal breeding, and to compare their behavior to that of the two termination criteria widely used in animal breeding for the PCG method applied to ssSNPBLUP. The convergence patterns of ssSNPBLUP were also compared to the convergence patterns of single-step genomic BLUP (ssGBLUP). Results Building upon previous work, we propose two termination criteria that take the properties of the system of equations into account. These two termination criteria are directly related to the relative error of the iterates with respect to the true solutions. Based on pig and dairy cattle datasets, we show that the preconditioned coefficient matrices of ssSNPBLUP and ssGBLUP have similar properties when using a second-level preconditioner for ssSNPBLUP. Therefore, the PCG method applied to ssSNPBLUP and ssGBLUP converged similarly based on the relative error of the iterates with respect to the true solutions. This similar convergence behavior between ssSNPBLUP and ssGBLUP was observed for both proposed termination criteria. This was, however, not the case for the termination criterion defined as the relative residual when applied to the dairy cattle evaluations. Conclusion Our results showed that the PCG method can converge similarly when applied to ssSNPBLUP and to ssGBLUP. The two proposed termination criteria always depicted these similar convergence behaviors, and we recommend them for comparing convergence properties of different models and for routine evaluations.


Signals ◽  
2021 ◽  
Vol 2 (2) ◽  
pp. 159-173
Author(s):  
Simone Fontana ◽  
Domenico Giorgio Sorrenti

Probabilistic Point Clouds Registration (PPCR) is an algorithm that, in its multi-iteration version, outperformed state-of-the-art algorithms for local point clouds registration. However, its performances have been tested using a fixed high number of iterations. To be of practical usefulness, we think that the algorithm should decide by itself when to stop, on one hand to avoid an excessive number of iterations and waste computational time, on the other to avoid getting a sub-optimal registration. With this work, we compare different termination criteria on several datasets, and prove that the chosen one produces very good results that are comparable to those obtained using a very large number of iterations, while saving computational time.


Author(s):  
Gabriele Eichfelder ◽  
Peter Kirst ◽  
Laura Meng ◽  
Oliver Stein

AbstractCurrent generalizations of the central ideas of single-objective branch-and-bound to the multiobjective setting do not seem to follow their train of thought all the way. The present paper complements the various suggestions for generalizations of partial lower bounds and of overall upper bounds by general constructions for overall lower bounds from partial lower bounds, and by the corresponding termination criteria and node selection steps. In particular, our branch-and-bound concept employs a new enclosure of the set of nondominated points by a union of boxes. On this occasion we also suggest a new discarding test based on a linearization technique. We provide a convergence proof for our general branch-and-bound framework and illustrate the results with numerical examples.


2020 ◽  
Author(s):  
mehmet bulut

This study focused on the development of a system based on evolutionary Algorithms to obtain the optimum parameters of the fuzzy controller to increase the convergence speed and accuracy of the controller. The aim of the study is to design fuzzy controller without expert’s knowledge by using evolutionary genetic algorithms and carry out on a DC motor. The design is based on optimization of rule bases of fuzzy controller. In the learning stage, the obtained rule base fitness values are measured by working the rule base on the controller. The learning stage is repeated the termination criteria. The proposed fuzzy controller is performed on the dc motor from a PC program using a interface circuit.


2020 ◽  
Author(s):  
mehmet bulut

This study focused on the development of a system based on evolutionary Algorithms to obtain the optimum parameters of the fuzzy controller to increase the convergence speed and accuracy of the controller. The aim of the study is to design fuzzy controller without expert’s knowledge by using evolutionary genetic algorithms and carry out on a DC motor. The design is based on optimization of rule bases of fuzzy controller. In the learning stage, the obtained rule base fitness values are measured by working the rule base on the controller. The learning stage is repeated the termination criteria. The proposed fuzzy controller is performed on the dc motor from a PC program using a interface circuit.


2020 ◽  
Vol 177 (3-4) ◽  
pp. 297-329
Author(s):  
María Alpuente ◽  
Angel Cuenca-Ortega ◽  
Santiago Escobar ◽  
José Meseguer

The Homeomorphic Embedding relation has been amply used for defining termination criteria of symbolic methods for program analysis, transformation, and verification. However, homeomorphic embedding has never been investigated in the context of order-sorted rewrite theories that support symbolic execution methods modulo equational axioms. This paper generalizes the symbolic homeomorphic embedding relation to order–sorted rewrite theories that may contain various combinations of associativity and/or commutativity axioms for different binary operators. We systematically measure the performance of different, increasingly efficient formulations of the homeomorphic embedding relation modulo axioms that we implement in Maude. Our experimental results show that the most efficient version indeed pays off in practice.


Author(s):  
Gabriele Eichfelder ◽  
Leo Warnow

AbstractAn important aspect of optimization algorithms, for instance evolutionary algorithms, are termination criteria that measure the proximity of the found solution to the optimal solution set. A frequently used approach is the numerical verification of necessary optimality conditions such as the Karush–Kuhn–Tucker (KKT) conditions. In this paper, we present a proximity measure which characterizes the violation of the KKT conditions. It can be computed easily and is continuous in every efficient solution. Hence, it can be used as an indicator for the proximity of a certain point to the set of efficient (Edgeworth-Pareto-minimal) solutions and is well suited for algorithmic use due to its continuity properties. This is especially useful within evolutionary algorithms for candidate selection and termination, which we also illustrate numerically for some test problems.


Sign in / Sign up

Export Citation Format

Share Document