moisture susceptibility
Recently Published Documents


TOTAL DOCUMENTS

335
(FIVE YEARS 136)

H-INDEX

28
(FIVE YEARS 7)

Author(s):  
Ekarizan Shaffie ◽  
◽  
H.A. Rashid ◽  
Fiona Shiong ◽  
Ahmad Kamil Arshad ◽  
...  

Stone Mastic Asphalt (SMA) is a gap-graded hot mixture designed to provide higher resistance towards permanent deformation and rutting potential by 30% to 40% more than dense-graded asphalt, due to its stable aggregate skeleton structure. However, compared to other types of hot mix asphalt, SMA unfortunately has some shortcomings in term of its susceptibility towards moisture-induced damage due to its structure and excessive bitumen content in the composition. This research aims to assess the performance of a SMA mixture with steel fiber by enhancing overall stability, abrasion resistance, and, most importantly, moisture susceptibility. This study involved the incorporation of various steel fiber proportions of 0%, 0.3%, 0.5% and 0.7% by the total weight of mixture. The steel fiber modified SMA was made up of 6.0% PEN 60/70 bitumen content. The performance of SMA were evaluated through Marshall stability and flow test, Cantabro loss test and indirect tensile strength test. The results obtained from the testing showed that the incorporation of steel fiber is significantly effective to enhance the resistance towards moisture damage, while increasing the stability and reducing the abrasion loss of SMA mixture, compared to conventional mixture. Overall, it can be concluded that the addition of steel fiber in asphalt mixture specifically SMA, has improved the mechanical performance in the application of asphalt pavement with the optimum steel fiber proportion of 0.3% by the weight of mixture. The developed models between the independent variables and responses demonstrated high levels of correlation. The study found that Response Surface Methodology (RSM) is an effective statistical method for providing an appropriate empirical model for relating parameters and predicting the optimum performance of an asphaltic mixture to reduce flexible pavement failure.


2021 ◽  
Vol 13 (24) ◽  
pp. 13828
Author(s):  
Yu Wang ◽  
Roaa H. Latief ◽  
Hasan Al-Mosawe ◽  
Hussein K. Mohammad ◽  
Amjad Albayati ◽  
...  

Recently, interest in the use of projectiles in research on recycling waste materials for construction applications has grown. Using recycled materials for the construction of asphalt concrete pavement, in the meantime, has become a topic of research due to its significant benefits, such as cost savings and reduced environmental impacts. This study reports on comprehensive experimental research conducted using a typical mechanical milling waste, iron filing waste (IFW), as an alternative fine aggregate for warm mix asphalt (WMA) for pavement wearing surface applications. A type of IFW from a local machine workshop was used to replace the conventional fine aggregate, fine natural sand (FNS), at percentages of 25%, 50% 75%, and 100% by the weight of FNS of the size passing sieve No. 50. Experimental tests were conducted on the mixes to compare their Marshall properties, resilient moduli, rutting and fatigue resistance, and moisture susceptibility. Finally, a performance analysis was carried out using the VESYS 5W software on the constructed pavement using the IFW mixes. Both the experiment and the modeling work demonstrated that IFW can be an effective alternative resource for replacing natural fine aggregate in WMA concrete and provided details on the optimum rate based on the comprehensive data obtained first hand.


2021 ◽  
pp. 129980
Author(s):  
Yao Zhang ◽  
Meng Ling ◽  
Fawaz Kaseer ◽  
Edith Arambula ◽  
Robert L. Lytton ◽  
...  

Author(s):  
Anusha T M ◽  
◽  
Akhilesh B R ◽  
Dr H S Jagadeesh ◽  
◽  
...  

Stone mastic asphalt (SMA) is a gap graded mix which is categorised by more quantity of coarse aggregate, high asphalt content and fibre. Due to stone on stone contact and presences of high filler content, it acts as a stiff matrix and reduces the rutting due to heavy traffic load. This research presents a study on fatigue performance RAP replaced SMA mixes using VG 30 as binder along with elastomer as a modifier and results were compared with conventional SMA mix. The specimens prepared were tested using several laboratory test procedures: Marshall mix design, indirect tensile strength, moisture susceptibility, drain down test and Repeated load fatigue test. Test results showed Marshall Properties of the RAP mix improved up to a RAP content of 30% without elastomer modifier and RAP content up to 60% with elastomeric modifier. From the moisture susceptibility test results, the elastomeric modified SMA mix showed high resistance to moisture damage when compared to conventional mix and 30% RAP replacement mix. Repeated load fatigue test was conducted for different stress load and temperature and results showed elastomeric modified SMA mix offered high resistance to deformation across all stress level and temperature when compared to conventional and optimum RAP mix. As a fatigue loading increased resulted in decrease of number of fatigue cycles and increased in the initial tensile strain of the mix. As the percentage of RAP addition increased the initial tensile strain decreased.


2021 ◽  
pp. 332-337
Author(s):  
Lokesh Gupta* ◽  
Rakesh Kumar ◽  
Anupam Kumar

Author(s):  
Thanh Chung Do ◽  
Hyun Jong Lee ◽  
Cheol Min Baek ◽  
Thanh Tu Nguyen ◽  
Carlo Elipse ◽  
...  

2021 ◽  
Vol 2 (1) ◽  
pp. 26-38
Author(s):  
Akram Hazaa Mohammed Ali Alhelyani ◽  
Zhang Shuwen

One of the most successful means of improving paving performance is by the use of Crump Rubber (CR). Increased demand for Asphalt Rubber Gap-graded (AR-Gap) mixtures as a pavement material has resulted from improvements in the basic asphalt binder as well as environmental advantages and improved performance in recent years. A number of agencies and researchers conducted AR-Gap mix studies to evaluate the design and performance of AR-Gap mixtures. In this study, the most recent research and practices in the design of AR-Gap mixtures were reviewed, and the performance characteristics of these mixtures were also summarized. In addition, the positive effect of adding ground rubber on the performance of the mixtures, including the effect on fatigue cracking, drainage, moisture susceptibility and permanent deformation is also reviewed. In conclusion, future aims in the building of AR-Gap pavement and performance potential were discussed, which will assist it in becoming a viable long-term pavement choice in the future. Based on the results of the evaluation process, it was discovered that there is still potential to improve the current design state of AR-Gap mixtures as well as the effect of rubber inserts in improving the performance of the mix.


2021 ◽  
Vol 904 ◽  
pp. 464-469
Author(s):  
Mohammed Qadir Ismael

The efforts embedded in this paper have been devoted to designing, preparing, and testing warm mix asphalt (WMA) mixtures and comparing their behavior against traditional hot mix asphalt mixtures. For WMA preparation, the Sasobit wax additive has been added to a 40/50 asphalt binder with a concentration of 3%. An experimental evaluation has been performed by conducting the Marshall together with volumetric properties, indirect tensile strength, and wheel tracking tests to acquire the tensile strength ratio (TSR), retained stability index (RSI), and rut depth. It was found that the gained benefit of reduction in mixing and compaction temperatures was reversely associated with a noticeable decline in Marshall properties and moisture susceptibility indices designated by TSR, and RSI, and even the rut resistance was adversely affected. Modification of WMA mixtures by 3% of Styrene-Butadiene-Styrene (SBS) polymer coupled with replacement of virgin ingredient by 50% of recycled asphalt concrete granted a 20% and 15% growth in Marshall stability and tensile strength, respectively. Moreover, both TSR and IRS indices have risen to 87% and 90%, respectively associated with a 39% increase in rutting resistance ability.


Sign in / Sign up

Export Citation Format

Share Document