green river
Recently Published Documents


TOTAL DOCUMENTS

1378
(FIVE YEARS 107)

H-INDEX

50
(FIVE YEARS 5)

Fossil Record ◽  
2021 ◽  
Vol 24 (2) ◽  
pp. 379-393
Author(s):  
Corentin Jouault ◽  
Arvid Aase ◽  
André Nel

Abstract. Paleoxyela nearctica gen. et sp. nov., is described from the upper Eocene of Florissant Formation in Colorado. We placed Paleoxyela gen. nov. in the subfamily Macroxyelinae and the tribe Macroxyelini based on the numerous wing venation characters visible on the specimen. Proxyelia pankowskii gen. et sp. nov. is described from the lower Eocene Fossil Lake deposits of the Green River Formation in Wyoming. We placed Proxyelia gen. nov. in the subfamily Macroxyelinae and the tribe Xyeleciini based on the numerous wing venation characters visible on the specimen. These new records of the family Xyelidae are of particular importance to better understand the past diversity of the clade and propose hypotheses about their diversification. Extant Xyelidae inhabit temperate Northern Hemisphere forests, and most of their larvae feed on conifers, which may explain why they are relatively poorly diversified compared to the other symphytan families. We suggest that the global decline in conifers and the reduced diversity of extant host trees partly explain the diversity of extant Xyelidae. We correlate the biome repartition during the Eocene to that of the extant xyelid.


2021 ◽  
Author(s):  
Dustin Perkins

Invasive exotic plant (IEP) species are a significant threat to natural ecosystem integrity and biodiversity, and controlling them is a high priority for the National Park Service. The Northern Colorado Plateau Network (NCPN) selected the early detection of IEPs as one of 11 monitoring protocols to be implemented as part of its long-term monitoring program. We also calculated a patch management index (PMI) to quantify the extent and density of invasive patches into a single value that helps identify the scale of the problem. Park managers can use this tool to help prioritize IEP treatment. At Dinosaur National Monument, the NCPN monitors IEPs in the Green and Yampa river corridors. This report summarizes data from monitoring on the Green River in 2019, and monitoring on the Yampa River in 2017, to represent the completion of the third monitoring rotation of the entire river corridor (2002–2005, 2010–2011, 2017–2019). During surveys conducted from June 26 to July 2, 2019, NCPN staff detected 12 priority IEP species and two non-priority species in a 84.6-hectare (209-acre) area along 74.4 kilometers of the Green River above (“upper”) and below (“low-er”) its confluence with the Yampa. A total of 2,535 IEP patches were detected. Of those patches, 24.2% and 15.6% were smaller than 40 m2 on the upper and lower Green River reaches, respectively. The patch management index (PMI) was low or very low for 95.7% of patches on the upper Green River and 90.9% of patches on the lower Green River. Tamarisk (Tamarix sp.), broad-leaf pepperwort (Lepidium latifolium), and yellow sweetclover (Meli-lotus officinalis) were the most widespread species. For the first time, NCPN monitoring detected teasel (Dipsacus sylvestris) on the upper Green River. Yellow sweetclover has increased on all three river reaches during the survey years. Musk thistle (Carduus nutans) was found at considerably lower levels than yellow sweetclover but has also increased on all three river reaches. Leafy spurge is increasing on the lower Green River and Yampa River. Cheatgrass was not monitored in the first rotation, but increased substantially in cover and percent frequency on all three river sections from 2010–2011 to 2017–2019. This increase may be due to a lack of recent high-flow scouring events. The highly regulated upper Green River generally has the highest number of IEPs, while the lower Green River has a moderate amount of IEPs. The largely unregulated flows of the Yampa River continue to result in a lower number of patches per kilometer, lower percent cover, and lower percent frequency than the upper or lower Green River. Network staff will return to the monument in 2022 to begin the fourth monitoring rotation.


2021 ◽  
Vol 17 (6) ◽  
pp. 2515-2536
Author(s):  
Rebekah A. Stein ◽  
Nathan D. Sheldon ◽  
Sarah E. Allen ◽  
Michael E. Smith ◽  
Rebecca M. Dzombak ◽  
...  

Abstract. As atmospheric carbon dioxide (CO2) and temperatures increase with modern climate change, ancient hothouse periods become a focal point for understanding ecosystem function under similar conditions. The early Eocene exhibited high temperatures, high CO2 levels, and similar tectonic plate configuration as today, so it has been invoked as an analog to modern climate change. During the early Eocene, the greater Green River Basin (GGRB) of southwestern Wyoming was covered by an ancient hypersaline lake (Lake Gosiute; Green River Formation) and associated fluvial and floodplain systems (Wasatch and Bridger formations). The volcaniclastic Bridger Formation was deposited by an inland delta that drained from the northwest into freshwater Lake Gosiute and is known for its vast paleontological assemblages. Using this well-preserved basin deposited during a period of tectonic and paleoclimatic interest, we employ multiple proxies to study trends in provenance, parent material, weathering, and climate throughout 1 million years. The Blue Rim escarpment exposes approximately 100 m of the lower Bridger Formation, which includes plant and mammal fossils, solitary paleosol profiles, and organic remains suitable for geochemical analyses, as well as ash beds and volcaniclastic sandstone beds suitable for radioisotopic dating. New 40Ar / 39Ar ages from the middle and top of the Blue Rim escarpment constrain the age of its strata to ∼ 49.5–48.5 Myr ago during the “falling limb” of the early Eocene Climatic Optimum. We used several geochemical tools to study provenance and parent material in both the paleosols and the associated sediments and found no change in sediment input source despite significant variation in sedimentary facies and organic carbon burial. We also reconstructed environmental conditions, including temperature, precipitation (both from paleosols), and the isotopic composition of atmospheric CO2 from plants found in the floral assemblages. Results from paleosol-based reconstructions were compared to semi-co-temporal reconstructions made using leaf physiognomic techniques and marine proxies. The paleosol-based reconstructions (near the base of the section) of precipitation (608–1167 mm yr−1) and temperature (10.4 to 12.0 ∘C) were within error of, although lower than, those based on floral assemblages, which were stratigraphically higher in the section and represented a highly preserved event later in time. Geochemistry and detrital feldspar geochronology indicate a consistent provenance for Blue Rim sediments, sourcing predominantly from the Idaho paleoriver, which drained the active Challis volcanic field. Thus, because there was neither significant climatic change nor significant provenance change, variation in sedimentary facies and organic carbon burial likely reflected localized geomorphic controls and the relative height of the water table. The ecosystem can be characterized as a wet, subtropical-like forest (i.e., paratropical) throughout the interval based upon the floral humidity province and Holdridge life zone schemes. Given the mid-paleolatitude position of the Blue Rim escarpment, those results are consistent with marine proxies that indicate that globally warm climatic conditions continued beyond the peak warm conditions of the early Eocene Climatic Optimum. The reconstructed atmospheric δ13C value (−5.3 ‰ to −5.8 ‰) closely matches the independently reconstructed value from marine microfossils (−5.4 ‰), which provides confidence in this reconstruction. Likewise, the isotopic composition reconstructed matches the mantle most closely (−5.4 ‰), agreeing with other postulations that warming was maintained by volcanic outgassing rather than a much more isotopically depleted source, such as methane hydrates.


2021 ◽  
Vol 8 (12) ◽  
Author(s):  
Sonja Wedmann ◽  
Petr Kment ◽  
Luiz Alexandre Campos ◽  
Thomas Hörnschemeyer

Newly discovered fossil bugs (Insecta: Hemiptera: Heteroptera: Pentatomidae) from the Eocene of Messel (Germany) and Green River (North America) exhibit an exaggerated morphology including prominent spiny humeral and anterolateral angles of the pronotum and a spiny lateral abdominal margin. Especially the humeral angles are unique; they consist of expansive, rounded projections with strong spines, which is a rare trait among pentatomids. A hypothesis for the function of this extreme morphology is defence against small vertebrate predators, such as birds or reptiles. The same protuberances also produce a disruptive effect camouflaging the specimen in its environment and provide additional protection. Therefore, the extreme morphology provides primary as well as secondary anti-predator defence. The morphology of Eospinosus peterkulkai gen. et sp. nov. and E. greenriverensis sp. nov. resembles that of Triplatygini, which today occur exclusively in Madagascar, as well as that of Discocephalinae or Cyrtocorinae, which today occur in the Neotropics. Due to a lack of conclusive characters, it cannot be excluded that the fossil species may represent a case of remarkable convergence and are not related to either taxon. Phylogenetic analyses using parsimony as well as Bayesian algorithms confirmed that the new genus is a member of Pentatomidae, but could not solve its phylogenetic relationships within Pentatomidae.


Water ◽  
2021 ◽  
Vol 13 (19) ◽  
pp. 2790
Author(s):  
Abdul Hannan ◽  
Jagadeesh Anmala

The classification of stream waters using parameters such as fecal coliforms into the classes of body contact and recreation, fishing and boating, domestic utilization, and danger itself is a significant practical problem of water quality prediction worldwide. Various statistical and causal approaches are used routinely to solve the problem from a causal modeling perspective. However, a transparent process in the form of Decision Trees is used to shed more light on the structure of input variables such as climate and land use in predicting the stream water quality in the current paper. The Decision Tree algorithms such as classification and regression tree (CART), iterative dichotomiser (ID3), random forest (RF), and ensemble methods such as bagging and boosting are applied to predict and classify the unknown stream water quality behavior from the input variables. The variants of bagging and boosting have also been looked at for more effective modeling results. Although the Random Forest, Gradient Boosting, and Extremely Randomized Tree models have been found to yield consistent classification results, DTs with Adaptive Boosting and Bagging gave the best testing accuracies out of all the attempted modeling approaches for the classification of Fecal Coliforms in the Upper Green River watershed, Kentucky, USA. Separately, a discussion of the Decision Support System (DSS) that uses Decision Tree Classifier (DTC) is provided.


2021 ◽  
Author(s):  
Thomas C. Chidsey ◽  
David E. Eby ◽  
Michael D. Vanden Berg ◽  
Douglas A. Sprinkel

Multiple oil discoveries reveal the global scale and economic importance of a distinctive reservoir type composed of possible microbial lacustrine carbonates like the Lower Cretaceous pre-salt reservoirs in deepwater offshore Brazil and Angola. Marine microbialite reservoirs are also important in the Neoproterozoic to lowest Cambrian starta of the South Oman Salt Basin as well as large Paleozoic deposits including those in the Caspian Basin of Kazakhstan (e.g., Tengiz field), and the Cedar Creek Anticline fields and Ordovician Red River “B” horizontal play of the Williston Basin in Montana and North Dakota, respectively. Evaluation of the various microbial fabrics and facies, associated petrophysical properties, diagenesis, and bounding surfaces are critical to understanding these reservoirs. Utah contains unique analogs of microbial hydrocarbon reservoirs in the modern Great Salt Lake and the lacustrine Tertiary (Eocene) Green River Formation (cores and outcrop) within the Uinta Basin of northeastern Utah. Comparable characteristics of both lake environments include shallowwater ramp margins that are susceptible to rapid widespread shoreline changes, as well as compatible water chemistry and temperature ranges that were ideal for microbial growth and formation/deposition of associated carbonate grains. Thus, microbialites in Great Salt Lake and from the Green River Formation exhibit similarities in terms of the variety of microbial textures and fabrics. In addition, Utah has numerous examples of marine microbial carbonates and associated facies that are present in subsurface analog oil field cores.


Zootaxa ◽  
2021 ◽  
Vol 4999 (4) ◽  
pp. 325-334
Author(s):  
S. BRUCE ARCHIBALD ◽  
ARVID AASE ◽  
ANDRÉ NEL

Eoteredon lacoi gen. et sp. nov., is described from the early Eocene Green River Formation in Wyoming, the second fossil siricid genus and species described from North America. We propose Eoteredon as sister to the genus Teredon, whose sole species is one of the rarest of extant Siricidae. The majority of siricids today inhabit temperate Northern Hemisphere forests; Teredon cubensis, however, is one of its few species that live in megathermal tropical lowlands. The Eocene forest that Eoteredon inhabited had a mesothermal to megathermal climate. We place Eoteredon in the context of broad Cenozoic climate change.


2021 ◽  
Vol 91 (6) ◽  
pp. 636-661
Author(s):  
Abdulah Eljalafi ◽  
J. Frederick Sarg

ABSTRACT Lake-margin lacustrine carbonates of the Green River Formation, in the eastern Uinta basin of Colorado and Utah, occur interbedded with fluvial and shoreline-parallel sandstone and shale. Microbial bindstones were deposited in a saline-alkaline lake during and after the Early Eocene Climate Optimum (EECO) (52–50 million years ago) that is characterized by global hot-house conditions, elevated atmospheric CO2, and highly fluctuating climate conditions. The stratigraphic architecture, chemostratigraphy, and morphology of the microbialites and other associated carbonate beds can be related to these climatic conditions. Three facies associations are recognized in the carbonate units across the lake margin from upper littoral to lower sublittoral environments: facies association 1, delta proximal non-microbial carbonates, characterized by quartzose bioclastic, peloidal, intraclastic packstones and grainstones–rudstones, quartose peloid wackestones and sandy oil shale; facies association 2, microbialite associated non-microbial carbonates, composed of ostracod, ooilitic, peloidal packstones–grainstones and intraclastic packstones, grainstones and rudstones; and facies association 3, microbial carbonates, consisting of diverse forms of stromatolitic and thrombolitic lithofacies. Multiple scales of carbonate cyclicity are suggested by shifts of δ18O and δ13C stable isotopes and deepening-upward microbialite facies. High-frequency cycles, on the order of 1 to 5 m thickness, are characterized by positive shifts in stable isotopes and interpreted deepening trends from littoral to lower sublittoral conditions. Large-scale trends, on the order of tens to hundreds of meters thickness record long-term lake changes, including: 1) sparse microbialite deposition during initial fresh conditions in lake stage 1, with low macro-structure diversity and light δ18O and δ13C isotope values; 2) transitional lake stage 2 corresponding to moderate macro-structural diversity, large meter-scale biostromal and biohermal buildups, and a positive shift in δ18O and δ13C isotope values that suggest increasing saline and alkaline conditions; 3) a highly fluctuating lake stage 3 that contains the highest microbialite macro-structural diversity and marks the interval of heaviest δ18O and δ13C isotope values, suggesting the greatest lake restriction, and the highest salinity and alkalinity conditions; and 4) a rising lake stage 4 that marks the lowest microbialite macro-structure diversity and a reversal in trend of δ18O and δ13C isotope values, that indicate deepening and freshening conditions.


Sign in / Sign up

Export Citation Format

Share Document