infant gut microbiome
Recently Published Documents


TOTAL DOCUMENTS

136
(FIVE YEARS 83)

H-INDEX

23
(FIVE YEARS 7)

2022 ◽  
Vol 8 ◽  
Author(s):  
Yosuke Komatsu ◽  
Daiki Kumakura ◽  
Namiko Seto ◽  
Hirohisa Izumi ◽  
Yasuhiro Takeda ◽  
...  

Background: The gut microbiome and fecal metabolites of breastfed infants changes during lactation, and are influenced by breast milk components. This study aimed to investigate dynamic associations of milk components with the infant gut microbiome and fecal metabolites throughout the lactation period in a mother–infant model.Methods: One month after delivery, breast milk and subsequent infant feces were collected in a pair for 5 months from a mother and an exclusively breastfed infant. Composition of the fecal microbiome was determined with 16S rRNA sequencing. Low-molecular-weight metabolites, including human milk oligosaccharides (HMOs), and antibacterial proteins were measured in feces and milk using 1H NMR metabolomics and enzyme-linked immunosorbent assays. The association of milk bioactive components with the infant gut microbiome and fecal metabolites was determined with Python clustering and correlation analyses.Results: The HMOs in milk did not fluctuate throughout the lactation period. However, they began to disappear in infant feces at the beginning of month 4. Notably, at this time-point, a bifidobacterium species switching (from B. breve to B. longum subsp. infantis) occurred, accompanied by fluctuations in several metabolites including acetate and butyrate in infant feces.Conclusions: Milk bioactive components, such as HMOs, might play different roles in the exclusively breastfed infants depending on the lactation period.


Author(s):  
David B. Healy ◽  
C. Anthony Ryan ◽  
R. Paul Ross ◽  
Catherine Stanton ◽  
Eugene M. Dempsey

2021 ◽  
pp. 110884
Author(s):  
Ravindra Pal Singh ◽  
Jayashree Niharika ◽  
Kanthi Kiran Kondepudi ◽  
Mahendra Bishnoi ◽  
Jagan Mohan Rao Tingirikari

Metabolites ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 702
Author(s):  
Anne G. Hoen ◽  
Modupe O. Coker ◽  
Juliette C. Madan ◽  
Wimal Pathmasiri ◽  
Susan McRitchie ◽  
...  

Cesarean delivery and formula feeding have both been implicated as important factors associated with perturbations to the infant gut microbiome. To investigate the functional metabolic response of the infant gut microbial milieu to these factors, we profiled the stool metabolomes of 121 infants from a US pregnancy cohort study at approximately 6 weeks of life and evaluated associations with delivery mode and feeding method. Multivariate analysis of six-week stool metabolomic profiles indicated discrimination by both delivery mode and diet. For diet, exclusively breast-fed infants exhibited metabolomic profiles that were distinct from both exclusively formula-fed and combination-fed infants, which were relatively more similar to each other in metabolomic profile. We also identified individual metabolites that were important for differentiating delivery mode groups and feeding groups and metabolic pathways related to delivery mode and feeding type. We conclude based on previous work and this current study that the microbial communities colonizing the gastrointestinal tracts of infants are not only taxonomically, but also functionally distinct when compared according to delivery mode and feeding groups. Further, different sets of metabolites and metabolic pathways define delivery mode and diet metabotypes.


2021 ◽  
Vol 9 (10) ◽  
pp. 2140
Author(s):  
Kameron Y. Sugino ◽  
Tengfei Ma ◽  
Nigel Paneth ◽  
Sarah S. Comstock

The gut microbiota undergoes rapid changes during infancy in response to early-life exposures. We have investigated how the infant gut bacterial community matures over time and how exposures such as human milk and antibiotic treatment alter gut microbiota development. We used the LonGP program to create predictive models to determine the contribution of exposures on infant gut bacterial abundances from one month to two years of age. These models indicate that infant antibiotic use, human milk intake, maternal pre-pregnancy BMI, and sample shipping time were associated with changes in gut microbiome composition. In most infants, Bacteroides, Lachnospiraceae unclassified, Faecalibacterium, Akkermansia, and Phascolarctobacterium abundance increased rapidly after 6 months, while Escherichia, Bifidobacterium, Veillonella, and Streptococcus decreased in abundance over time. Individual, time-varying, random effects explained most of the variation in the LonGP models. Multivariate association with linear models (MaAsLin) displayed partial agreement with LonGP in the predicted trajectories over time and in relation to significant factors such as human milk intake. Multiple factors influence the dynamic changes in bacterial composition of the infant gut. Within-individual differences dominate the temporal variations in the infant gut microbiome, suggesting individual temporal variability is an important feature to consider in studies with a longitudinal sampling design.


2021 ◽  
Vol 9 (10) ◽  
pp. 2089
Author(s):  
Shanthi G. Parkar ◽  
Doug I. Rosendale ◽  
Halina M. Stoklosinski ◽  
Carel M. H. Jobsis ◽  
Duncan I. Hedderley ◽  
...  

We examined the prebiotic potential of 32 food ingredients on the developing infant microbiome using an in vitro gastroileal digestion and colonic fermentation model. There were significant changes in the concentrations of short-chain fatty-acid metabolites, confirming the potential of the tested ingredients to stimulate bacterial metabolism. The 16S rRNA gene sequencing for a subset of the ingredients revealed significant increases in the relative abundances of the lactate- and acetate-producing Bifidobacteriaceae, Enterococcaceae, and Lactobacillaceae, and lactate- and acetate-utilizing Prevotellaceae, Lachnospiraceae, and Veillonellaceae. Selective changes in specific bacterial groups were observed. Infant whole-milk powder and an oat flour enhanced Bifidobacteriaceae and lactic acid bacteria. A New Zealand-origin spinach powder enhanced Prevotellaceae and Lachnospiraceae, while fruit and vegetable powders increased a mixed consortium of beneficial gut microbiota. All food ingredients demonstrated a consistent decrease in Clostridium perfringens, with this organism being increased in the carbohydrate-free water control. While further studies are required, this study demonstrates that the selected food ingredients can modulate the infant gut microbiome composition and metabolism in vitro. This approach provides an opportunity to design nutrient-rich complementary foods that fulfil infants’ growth needs and support the maturation of the infant gut microbiome.


2021 ◽  
Author(s):  
Daisy W. Chen ◽  
Nandita R. Garud

While the ecological dynamics of the infant gut microbiome have been intensely studied, relatively little is known about the evolutionary dynamics in the infant gut microbiome. Here we analyze longitudinal fecal metagenomic data from >700 infants and their mothers over the first year of life and find that the evolutionary dynamics in infant gut microbiomes are distinct from that of adults. We find evidence for almost 100-fold increase in the rate of evolution and strain turnover in the infant gut compared to healthy adults, with the mother-infant transition at delivery being a particularly dynamic period in which gene loss dominates. Within a few months after birth, these dynamics stabilize, and gene gains become increasingly frequent as the microbiome matures. We furthermore find that evolutionary changes in infants show signatures of being seeded by a mixture of de novo mutations and transmissions of pre-evolved lineages from the broader family. Several of these evolutionary changes occur in parallel in multiple infants, highlighting candidate genes that may play important roles in the development of the infant gut microbiome. Our results point to a picture of a volatile infant gut microbiome characterized by rapid evolutionary and ecological change in the early days of life.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Liwen Xiao ◽  
Jinfeng Wang ◽  
Jiayong Zheng ◽  
Xiaoqing Li ◽  
Fangqing Zhao

Abstract Background The succession of the gut microbiota during the first few years plays a vital role in human development. We elucidate the characteristics and alternations of the infant gut microbiota to better understand the correlation between infant health and microbiota maturation. Results We collect 13,776 fecal samples or datasets from 1956 infants between 1 and 3 years of age, based on multi-population cohorts covering 17 countries. The characteristics of the gut microbiota are analyzed based on enterotype and an ecological model. Clinical information (n = 2287) is integrated to understand outcomes of different developmental patterns. Infants whose gut microbiota are dominated by Firmicutes and Bifidobacterium exhibit typical characteristics of early developmental stages, such as unstable community structure and low microbiome maturation, while those driven by Bacteroides and Prevotella are characterized by higher diversity and stronger connections in the gut microbial community. We further reveal a geography-related pattern in global populations. Through ecological modeling and functional analysis, we demonstrate that the transition of the gut microbiota from infants towards adults follows a deterministic pattern; as infants grow up, the dominance of Firmicutes and Bifidobacterium is replaced by that of Bacteroides and Prevotella, along with shifts in specific metabolic pathways. Conclusions By leveraging the extremely large datasets and enterotype-based microbiome analysis, we decipher the colonization and transition of the gut microbiota in infants from a new perspective. We further introduce an ecological model to estimate the tendency of enterotype transitions, and demonstrated that the transition of infant gut microbiota was deterministic and predictable.


Sign in / Sign up

Export Citation Format

Share Document