animal phyla
Recently Published Documents


TOTAL DOCUMENTS

133
(FIVE YEARS 55)

H-INDEX

26
(FIVE YEARS 3)

2022 ◽  
Author(s):  
Robine Helena Jannigje Leeuwis ◽  
Anthony Kurt Gamperl

The high intertidal zone is home to an incredible variety of marine animals, as it offers an escape from low intertidal/subtidal predation and competition, among other advantages. However, this area of the shore also comes with many tide-driven and emersion-associated environmental stressors, such as desiccation, high temperatures and freezing stress, hypoxia, salinity fluctuations, nitrogenous waste accumulation, ultraviolet (UV) radiation, wave and ice disturbance, and hydrogen sulphide (H2S) toxicity. This review explores the diversity of evolutionary adaptations and plastic phenotypic responses that high intertidal animals use to cope with these challenges. Examples are provided of behavioural, morphological, physiological and biochemical adaptations/responses, along with some of the underlying molecular mechanisms that have been elucidated to date. Adaptations of many different worms, anemones, molluscs, crustaceans and fishes are highlighted. Many adaptations and mechanisms of plasticity are universal among animal phyla, and some are multifunctional (serve more than one function) or provide tolerance to multiple stressors (i.e., ‘cross-tolerance’). High intertidal animals have received considerable attention by scientists, given their accessibility and that they can provide valuable insights in the transition from a marine to a terrestrial lifestyle. Nevertheless, further research is needed to understand the adaptations/responses of these animals more thoroughly, and the future holds great promise for accomplishing this with recent advances in epigenetics, transcriptomics, protein biochemistry and other molecular tools.


Marine Drugs ◽  
2022 ◽  
Vol 20 (1) ◽  
pp. 74
Author(s):  
Kenneth Sandoval ◽  
Grace P. McCormack

Actinoporins are proteinaceous toxins known for their ability to bind to and create pores in cellular membranes. This quality has generated interest in their potential use as new tools, such as therapeutic immunotoxins. Isolated historically from sea anemones, genes encoding for similar actinoporin-like proteins have since been found in a small number of other animal phyla. Sequencing and de novo assembly of Irish Haliclona transcriptomes indicated that sponges also possess similar genes. An exhaustive analysis of publicly available sequencing data from other sponges showed that this is a potentially widespread feature of the Porifera. While many sponge proteins possess a sequence similarity of 27.70–59.06% to actinoporins, they show consistency in predicted structure. One gene copy from H. indistincta has significant sequence similarity to sea anemone actinoporins and possesses conserved residues associated with the fundamental roles of sphingomyelin recognition, membrane attachment, oligomerization, and pore formation, indicating that it may be an actinoporin. Phylogenetic analyses indicate frequent gene duplication, no distinct clade for sponge-derived proteins, and a stronger signal towards actinoporins than similar proteins from other phyla. Overall, this study provides evidence that a diverse array of Porifera represents a novel source of actinoporin-like proteins which may have biotechnological and pharmaceutical applications.


2022 ◽  
Author(s):  
Najate Ait-Ali ◽  
Frederic Blond ◽  
Emmanuelle Clerin ◽  
Ala Morshedian ◽  
Quenol Cesar ◽  
...  

The nucleoredoxin-like genes NXNL1 and NXNL2 were identified through the biological activity of rod-derived cone viability factors (RdCVF and RdCVF2), the alternatively spliced variants produced by intron retention, that mediate signaling between rod and cone photoreceptors by stimulating glucose uptake. These therapeutic genes for inherited retinal degenerations also produce by splicing thioredoxin-like proteins that reduce oxidized cysteines in photoreceptor proteins. The first NXNL genes date from the first animal phyla. Intron retention produces an active RdCVF protein in the tentacles of Hydra vulgaris, a species without eyes. A Scallop RdCVF protein is produced by ciliated photoreceptors of the retina and binds its receptor, BSG1. In the lamprey, a descendent of early vertebrates, RdCVF metabolic signaling between rod and cones is fully established. In the mouse, the production of BSG1 by photoreceptors is regulated by cell-specific splicing inhibition. RdCVF signaling predates photoreceptors and evolved through two alternative splicing events.


Genes ◽  
2021 ◽  
Vol 12 (12) ◽  
pp. 2030
Author(s):  
Elena V. Romanova ◽  
Yurij S. Bukin ◽  
Kirill V. Mikhailov ◽  
Maria D. Logacheva ◽  
Vladimir V. Aleoshin ◽  
...  

There are more than 350 species of amphipods (Crustacea) in Lake Baikal, which have emerged predominantly through the course of endemic radiation. This group represents a remarkable model for studying various aspects of evolution, one of which is the evolution of mitochondrial (mt) genome architectures. We sequenced and assembled the mt genome of a pelagic Baikalian amphipod species Macrohectopus branickii. The mt genome is revealed to have an extraordinary length (42,256 bp), deviating significantly from the genomes of other amphipod species and the majority of animals. The mt genome of M. branickii has a unique gene order within amphipods, duplications of the four tRNA genes and Cox2, and a long non-coding region, that makes up about two thirds of the genome’s size. The extension of the mt genome was most likely caused by multiple duplications and inversions of regions harboring ribosomal RNA genes. In this study, we analyzed the patterns of mt genome length changes in amphipods and other animal phyla. Through a statistical analysis, we demonstrated that the variability in the mt genome length may be a characteristic of certain phyla and is primarily conferred by expansions of non-coding regions.


2021 ◽  
Author(s):  
Matthew J Murphy ◽  
Erica L Westerman

The spectrum of light that an animal sees - from ultraviolet to far red light - is governed by the number and wavelength sensitivity of a family of retinal proteins called opsins. It has been hypothesized that the spectrum of light available in an environment influences the range of colors that a species has evolved to see. However, invertebrates and vertebrates use phylogenetically distinct opsins in their retinae, and it remains unclear whether these distinct opsins influence what animals see, or how they adapt to their light environments. Systematically utilizing published visual sensitivity data from across animal phyla, we found that terrestrial animals are more sensitive to shorter and longer wavelengths of light than aquatic animals, and that invertebrates are more sensitive to shorter wavelengths of light than vertebrates. Controlling for phylogeny removes the effects of habitat and lineage on visual sensitivity. Closed and open habitat terrestrial species have similar spectral sensitivities when comparing across the Metazoa, and deep water animals are more sensitive to shorter wavelengths of light than shallow water animals. Our results suggest that animals do adapt to their light environment, however the invertebrate-vertebrate evolutionary divergence has limited the degree to which animals can perform visual tuning.


2021 ◽  
Vol 9 ◽  
Author(s):  
Xantha Karp

Diapause is a state of developmental arrest adopted in response to or in anticipation of environmental conditions that are unfavorable for growth. In many cases, diapause is facultative, such that animals may undergo either a diapause or a non-diapause developmental trajectory, depending on environmental cues. Diapause is characterized by enhanced stress resistance, reduced metabolism, and increased longevity. The ability to postpone reproduction until suitable conditions are found is important to the survival of many animals, and both vertebrate and invertebrate species can undergo diapause. The decision to enter diapause occurs at the level of the whole animal, and thus hormonal signaling pathways are common regulators of the diapause decision. Unlike other types of developmental arrest, diapause is programmed, such that the diapause developmental trajectory includes a pre-diapause preparatory phase, diapause itself, recovery from diapause, and post-diapause development. Therefore, developmental pathways are profoundly affected by diapause. Here, I review two conserved hormonal pathways, insulin/IGF signaling (IIS) and nuclear hormone receptor signaling (NHR), and their role in regulating diapause across three animal phyla. Specifically, the species reviewed are Austrofundulus limnaeus and Nothobranchius furzeri annual killifishes, Caenorhabditis elegans nematodes, and insect species including Drosophila melanogaster, Culex pipiens, and Bombyx mori. In addition, the developmental changes that occur as a result of diapause are discussed, with a focus on how IIS and NHR pathways interact with core developmental pathways in C. elegans larvae that undergo diapause.


2021 ◽  
Author(s):  
Connor G G Bamford ◽  
William Marciel Souza ◽  
Rhys Parry ◽  
Robert J Gifford

The flaviviruses (family Flaviviridae) are a group of positive-strand RNA viruses, many of which pose serious risks to human health on a global scale. Here, we calibrate the timeline of flavivirus evolution using flavivirus-derived DNA sequences identified in animal genomes. We demonstrate that the family is at least 100 million years old and show that this timing can be integrated with dates inferred from co-phylogenetic analysis and paleontological records to produce a cohesive overview of flavivirus evolution in which the main subgroups originate early in animal evolution and broadly co-diverge with animal phyla. In addition, we show that the arthropod-borne 'classical' flaviviruses first evolved from tick-specific viruses, and only later adapted to become insect-borne. Our findings demonstrate that the biological properties of flaviviruses have been acquired over many millions of years of evolution, implying that broad-scale comparative analysis can reveal fundamental insights into flavivirus biology. We implement a novel approach to computational genomic studies of viruses that can support these efforts by enabling more efficient utilization of evolution-related domain knowledge in virus research.


2021 ◽  
Author(s):  
Brandon M. Murareanu ◽  
Jessica Knox ◽  
Peter Roy ◽  
Aaron W. Reinke

Microsporidia are a diverse group of fungal-related obligate intracellular parasites that infect most animal phyla. Despite the emerging threat that microsporidia have become to humans and agricultural animals, few reliable treatment options exist. To identify novel chemical inhibitors of microsporidia infection, we developed a high-throughput screening method using Caenorhabditis elegans and the microsporidia species Nematocida parisii. We screened the Spectrum Collection of 2,560 FDA-approved compounds and natural products to identify compounds that prevent C. elegans progeny inhibition caused by N. parisii infection. We developed a semi-automated method for quantifying C. elegans progeny number in liquid culture, confirming 11 candidate microsporidia inhibitors. We show that five compounds prevent microsporidia infection by inhibiting spore firing, and demonstrate that one compound, dexrazoxane, slows infection progression. Together, our results demonstrate the effectiveness of C. elegans as a model host for drug discovery against intracellular pathogens and provide a scalable high-throughput system for the identification and characterization of additional microsporidia inhibitors.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Yuto Yoshinari ◽  
Hina Kosakamoto ◽  
Takumi Kamiyama ◽  
Ryo Hoshino ◽  
Rena Matsuoka ◽  
...  

AbstractThe enteroendocrine cell (EEC)-derived incretins play a pivotal role in regulating the secretion of glucagon and insulins in mammals. Although glucagon-like and insulin-like hormones have been found across animal phyla, incretin-like EEC-derived hormones have not yet been characterised in invertebrates. Here, we show that the midgut-derived hormone, neuropeptide F (NPF), acts as the sugar-responsive, incretin-like hormone in the fruit fly, Drosophila melanogaster. Secreted NPF is received by NPF receptor in the corpora cardiaca and in insulin-producing cells. NPF-NPFR signalling resulted in the suppression of the glucagon-like hormone production and the enhancement of the insulin-like peptide secretion, eventually promoting lipid anabolism. Similar to the loss of incretin function in mammals, loss of midgut NPF led to significant metabolic dysfunction, accompanied by lipodystrophy, hyperphagia, and hypoglycaemia. These results suggest that enteroendocrine hormones regulate sugar-dependent metabolism through glucagon-like and insulin-like hormones not only in mammals but also in insects.


Sign in / Sign up

Export Citation Format

Share Document