efficient charge
Recently Published Documents


TOTAL DOCUMENTS

733
(FIVE YEARS 347)

H-INDEX

57
(FIVE YEARS 18)

2022 ◽  
Vol 23 ◽  
pp. 100714
Author(s):  
Yu Liu ◽  
Zhenzi Li ◽  
Ying Xie ◽  
Yan Tao ◽  
Jiaxing Wu ◽  
...  

Nanomaterials ◽  
2022 ◽  
Vol 12 (2) ◽  
pp. 179
Author(s):  
Phuong Anh Nguyen ◽  
Thi Kim Anh Nguyen ◽  
Duc Quang Dao ◽  
Eun Woo Shin

Recently, Pt-loaded graphic carbon nitride (g-C3N4) materials have attracted great attention as a photocatalyst for hydrogen evolution from water. The simple surface modification of g-C3N4 by hydrothermal methods improves photocatalytic performance. In this study, ethanol is used as a solvothermal solvent to modify the surface properties of g-C3N4 for the first time. The g-C3N4 is thermally treated in ethanol at different temperatures (T = 140 °C, 160 °C, 180 °C, and 220 °C), and the Pt co-catalyst is subsequently deposited on the g-C3N4 via a photodeposition method. Elemental analysis and XPS O 1s data confirm that the ethanol solvothermal treatment increased the contents of the oxygen-containing functional groups on the g-C3N4 and were proportional to the treatment temperatures. However, the XPS Pt 4f data show that the Pt2+/Pt0 value for the Pt/g-C3N4 treated at ethanol solvothermal temperature of 160 °C (Pt/CN-160) is the highest at 7.03, implying the highest hydrogen production rate of Pt/CN-160 is at 492.3 μmol g−1 h−1 because the PtO phase is favorable for the water adsorption and hydrogen desorption in the hydrogen evolution process. In addition, the electrochemical impedance spectroscopy data and the photoluminescence spectra emission peak intensify reflect that the Pt/CN-160 had a more efficient charge separation process that also enhanced the photocatalytic activity.


2022 ◽  
Vol 23 (1) ◽  
pp. 543
Author(s):  
Magdalena Kaźmierczak ◽  
Bartosz Trzaskowski ◽  
Silvio Osella

An artificial leaf is a concept that not only replicates the processes taking place during natural photosynthesis but also provides a source of clean, renewable energy. One important part of such a device are molecules that stabilize the connection between the bioactive side and the electrode, as well as tune the electron transfer between them. In particular, nitrilotriacetic acid (NTA) derivatives used to form a self-assembly monolayer chemisorbed on a graphene monolayer can be seen as a prototypical interface that can be tuned to optimize the electron transfer. In the following work, interfaces with modifications of the metal nature, backbone saturation, and surface coverage density are presented by means of theoretical calculations. Effects of the type of the metal and the surface coverage density on the electronic properties are found to be key to tuning the electron transfer, while only a minor influence of backbone saturation is present. For all of the studied interfaces, the charge transfer flow goes from graphene to the SAM. We suggest that, in light of the strength of electron transfer, Co2+ should be considered as the preferred metal center for efficient charge transfer.


2022 ◽  
Author(s):  
Feng Min ◽  
Zhengqing Wei ◽  
Zhen Yu ◽  
Yu-Ting Xiao ◽  
Shien Guo ◽  
...  

Both efficient charge separation and sufficiently exposed active sites are critical limiting for solar-driven organic contaminants degradation. Herein, we describe a hierarchical heterojunction photocatalyst fabricated by in situ growth of...


2022 ◽  
Vol 355 ◽  
pp. 01020
Author(s):  
Nataliya Karaush-Karmazin ◽  
Glib Baryshnikov ◽  
Boris Minaev

The crystal structure of the new diazatrioxa[9]circulene and tetrahydro-diazatetraoxa[10]circulene which represent the first synthesized representatives of “higher” hetero[n]circulenes with n>8, was analyzed in details. Hirshfeld surface analyses, the dnorm surfaces and two-dimensional fingerprint plots were used to verify the contributions of the different intermolecular interactions within the crystal structure of diazatrioxa[9]circulene and tetrahydro-diazatetraoxa[10]circulene. The Hirshfeld surface analysis of the crystal structure clarifies that the most important contribution for crystal packing is from H∙∙∙H and C∙∙∙H intermolecular interactions for both circulenes. The shape-index surface shows that in the case of diazatrioxa[9]circulene two sides of the molecules are involved with the same contacts in neighbouring molecules and curvedness plots show flat surface patches that are characteristic of planar stacking. Such face-to-face structural organization provides the main charge transfer pathway in [9]circulene. In the case of [10]circulene, the area involved in the same contacts is much less, however, two types of intermolecular packing modes can form such flat surface patches at curvedness plots which is useful for more efficient charge transfer.


2021 ◽  
pp. 2100243
Author(s):  
Weon-kyu Koh ◽  
Soo Ho Choi ◽  
Youngsik Kim ◽  
Hyojung Kim ◽  
Ki Kang Kim ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document