folding dynamics
Recently Published Documents


TOTAL DOCUMENTS

270
(FIVE YEARS 47)

H-INDEX

39
(FIVE YEARS 3)

Author(s):  
Nicole D. Wagner ◽  
Hejun Liu ◽  
Henry W. Rohrs ◽  
Gaya K. Amarasinghe ◽  
Michael L. Gross ◽  
...  

2021 ◽  
Author(s):  
Takashi Ichinomiya

Abstract The folding dynamics of proteins is a primary area of interest in protein science. We carried out topological data analysis (TDA) of the folding process of HP35(nle-nle), double-mutant of villin headpiece subdomain. Using persistent homology and non-negative matrix factorization, we reduced the dimension of protein structure into two, and investigate the flow in the reduced space. We found this protein has two folding paths, distinguished by the pairings of inter-helix residues. Our analysis showed the excellent performance of TDA in capturing the formation of tertiary structure.


Biopolymers ◽  
2021 ◽  
Author(s):  
J. Tassilo Grün ◽  
Harald Schwalbe

2021 ◽  
Vol 4 (s1) ◽  
Author(s):  
Marcello Miceli ◽  
Cecile Exertier ◽  
Beatrice Vallone ◽  
Marco Cavaglià ◽  
Marco A. Deriu

The Infantile-onset Ascending Hereditary Spastic Paralysis (IAHSP) is an incurable rare neurodegerative disease related to a mutation-driven aberrant behaviour of the Alsin protein. The lack of information on Alsin atomic structure limits a complete understanding on pathology mechanisms. In this work, molecular modelling techniques have been applied to shed lights on Alsin folding dynamics and misfunction induced by aberrant mutations.


2021 ◽  
Author(s):  
Matthew Thomas Doyle ◽  
John R. Jimah ◽  
Jenny E. Hinshaw ◽  
Harris D. Bernstein

SUMMARYTransmembrane β-barrel proteins are folded into the outer membrane (OM) of Gram-negative bacteria by the β-barrel assembly machine (BAM) via an unexplained process that occurs without known external energy sources. Here we used single-particle cryo-EM to visualize the folding dynamics of a model β-barrel protein (EspP) by BAM. We found that BAM binds the highly conserved “β-signal” motif of EspP to correctly orient β-strands in the OM during folding. We also found that the folding of EspP proceeds via remarkable “hybrid-barrel” intermediates in which membrane integrated β-sheets are attached to the essential BAM subunit, BamA. The structures show an unprecedented deflection of the membrane surrounding the EspP intermediates and suggest that β-sheets progressively fold towards BamA to form a β-barrel. Along with in vivo experiments that tracked β-barrel folding while the OM tension was modified, our results support a model in which BAM harnesses OM elasticity to accelerate β-barrel folding.


2021 ◽  
Vol 118 (31) ◽  
pp. e2023856118
Author(s):  
Cihan Ayaz ◽  
Lucas Tepper ◽  
Florian N. Brünig ◽  
Julian Kappler ◽  
Jan O. Daldrop ◽  
...  

We extract the folding free energy landscape and the time-dependent friction function, the two ingredients of the generalized Langevin equation (GLE), from explicit-water molecular dynamics (MD) simulations of the α-helix forming polypeptide alanine9 for a one-dimensional reaction coordinate based on the sum of the native H-bond distances. Folding and unfolding times from numerical integration of the GLE agree accurately with MD results, which demonstrate the robustness of our GLE-based non-Markovian model. In contrast, Markovian models do not accurately describe the peptide kinetics and in particular, cannot reproduce the folding and unfolding kinetics simultaneously, even if a spatially dependent friction profile is used. Analysis of the GLE demonstrates that memory effects in the friction significantly speed up peptide folding and unfolding kinetics, as predicted by the Grote–Hynes theory, and are the cause of anomalous diffusion in configuration space. Our methods are applicable to any reaction coordinate and in principle, also to experimental trajectories from single-molecule experiments. Our results demonstrate that a consistent description of protein-folding dynamics must account for memory friction effects.


2021 ◽  
Author(s):  
Hywel Dunn-Davies ◽  
Tatiana Dudnakova ◽  
Jean-Louis Langhendries ◽  
Nicholas Watkins ◽  
Denis LJ Lafontaine ◽  
...  

Altered expression of box C/D small nucleolar RNAs (snoRNAs) is implicated in human diseases, including cancer. Box C/D snoRNAs canonically direct site-specific, 2′-O-methylation but the extent to which they participate in other functions remains unclear. To identify RNA targets of box C/D snoRNAs in human cells, we applied two techniques based on UV crosslinking, proximity ligation and sequencing of RNA hybrids (CLASH and FLASH). These identified hundreds of novel snoRNA interactions with rRNA, snoRNAs and mRNAs. We developed an informatic pipeline to rigorously call interactions predicted to direct methylation. Multiple snoRNA-rRNA interactions identified were not predicted to direct RNA methylation. These potentially modulate methylation efficiency and/or contribute to folding dynamics. snoRNA-mRNA hybrids included 1,300 interactions between 117 snoRNA families and 940 mRNAs. Human U3 is substantially more abundant than other snoRNAs and represented about 50% of snoRNA-mRNA hybrids. The distribution of U3 interactions across mRNAs also differed from other snoRNAs. Following U3 depletion, mRNAs showing altered abundance were strongly enriched for U3 CLASH targets. Most human snoRNAs are excised from pre-mRNA introns. Enrichment for snoRNA association with branch point regions of introns that contain snoRNA genes was common, suggesting widespread regulation of snoRNA maturation.


Sign in / Sign up

Export Citation Format

Share Document