current voltage curve
Recently Published Documents


TOTAL DOCUMENTS

151
(FIVE YEARS 24)

H-INDEX

22
(FIVE YEARS 2)

Membranes ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 22
Author(s):  
Anatoly N. Filippov ◽  
Natalia A. Kononenko ◽  
Natalia V. Loza ◽  
Daria A. Petrova

A novel bilayer cation-exchange membrane—consisting of a thick layer of a pristine perfluorinated membrane MF-4SC (Russian equivalent of Nafion®-117) and a thinner layer (1 μm) of the membrane, on a base of glassy polymer of internal microporosity poly(1-trimethylsilyl-1-propyne) (PTMSP)—was prepared and characterized. Using the physicochemical characteristics of one-layer membranes MF-4SC and PTMSP in 0.05 M HCl and NaCl solutions, the asymmetric current–voltage curves (CVC) of the bilayer composite were described with good accuracy up to the overlimiting regime, based on the “fine-porous membrane” model. The MF-4SC/PTMSP bilayer composite has a significant asymmetry of CVC that is promising for using it in electromembrane devices, such as membrane detectors, sensors, and diodes.


2021 ◽  
Vol 2052 (1) ◽  
pp. 012014
Author(s):  
V V Gavrushko ◽  
A S Ionov ◽  
O R Kadriev ◽  
V A Lastkin

Abstract The volt-ampere curve of silicon differential photodiodes were measured. It was found that the current-voltage curve of the photodiodes of the main and additional channels had a similar shape, without revealing a significant dependence on the implantation dose of the additional channel. The main parameters of the equivalent circuits of photodiodes are determined. In the reverse branch, the dominant impact was exerted by the surface leakage conductivity with a differential resistance of about 10 GΩ. Measurements from minus 60 °C to 60 °C showed that when using amplifiers with an input impedance of about 103 Ω, differential photoreceivers can be successfully used as selective short-wavelength and two-color ones.


2021 ◽  
pp. 3545-3551
Author(s):  
Musab S. Mohammad ◽  
Raad A. Rasool ◽  
Fathi M. Jassim

     In this paper, we experimentally studied the effects of optical power of semiconductor laser on the electrical properties of silicon diode of an exposed device. The experimental results showed that the laser diode light of different optical powers (2, 3, and 4 mW) had effects on the silicon diode that are somewhat similar to those of thermal treatment. A shift in the current-voltage curve to the left side was also noticed, which led to a non-linear decrease of the barrier voltage of the diode by the effect of laser light. We also reveal a decrease by 344.8 nA/mW in the reverse saturation current of the silicon diode as a result of exposure to laser light. The forward resistance of the silicon diode decreased with increased incident optical power. The value of the maximum current of diode increased by 0.5 A/W with increasing the optical power incident on the diode.


Author(s):  
Rajan Vohra ◽  
Harleen Kaur ◽  
Jupinder Kaur ◽  
Ravinder Kumar

AbstractThe transport properties of molecular wire comprising of B40 fullerene are investigated by employing density functional theory (DFT) and non-equilibrium green’s function (NEGF) methodology. The quantum transport is evaluated by calculating the density of states, transmission spectra at various bias voltages, molecular energy spectra, HOMO-LUMO gap, current–voltage curve, and transmission pathways. In context to its properties, results show that by increasing the length of molecular wire, the device exhibits rectification ratio and prominent NDR behavior. I–V curve scrutinizes that as the length of wire is increased the curve becomes non-linear. This non-linear behavior is more prominent in the case when the length of wire is increased up to six fullerene cages significant rectification ratio (R.R) and negative differential resistance (NDR) comes into the picture. The excellent negative differential resistance ensures that a device with at least six molecular wires can be used as a tunnel diode. Graphic abstract


2021 ◽  
Author(s):  
Georgios Xystouris ◽  
Christopher Stephen Arridge ◽  
Michiko Morooka ◽  
Jan-Erik Wahlund

<p>The Langmuir Probe (LP) onboard Cassini was one of the three experiments that could measure the cold inner magnetospheric plasma, along with the Radio and Plasma Waves Science (RPWS) and the Cassini Plasma Spectrometer (CAPS). While the century-old LP theory looks quite straight-forward, in reality things are much more complicated.</p> <p>The operation of the LP is quite simple: by applying positive bias voltages, the probe attracts the electrons and repels the ions of the surrounding plasma. From the resulting current-voltage curve characteristics of the ambient electrons can be estimated, i.e. density and temperature. When negative bias voltages are applied to the probe the characteristics of the ambient ions can be estimated, i.e. density, temperature, and mass.</p> <p>Though the LP operation and interpretation are quite simple and straightforward, there are assumptions made and therefore the theoretical models may not always reflect the actual plasma conditions in Saturn’s magnetosphere. For this study we are focused on the effect of the photoelectrons, i.e. electrons that are generated by the incident sunlight on Cassini’s surfaces, which are difficult to be observed and corrected for in a laboratory plasma.</p> <p>We developed a robust algorithm that identifies the transitions of the LP in and out of shadow caused by the Saturn and its rings. The LP data inside and outside the eclipses are compared using the algorithm developed. In this presentation we will discuss the impact of the photoelectron generation from the spacecraft surfaces to the LP current-voltage curves, and understand the variations of the measured plasma density connected with the photoelectrons.</p>


Nanomaterials ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 1290
Author(s):  
Quan Yang ◽  
Li Ma ◽  
Shungen Xiao ◽  
Dongxing Zhang ◽  
Aristide Djoulde ◽  
...  

Determining the metallicity and semiconductivity of a multi-walled carbon nanotube (MWCNT) bundle plays a particularly vital role in its interconnection with the metal electrode of an integrated circuit. In this paper, an effective method is proposed to determine the electrical transport properties of an MWCNT bundle using a current–voltage characteristic curve during its electrical breakdown. We established the reliable electrical nanoscale contact between the MWCNT bundle and metal electrode using a robotic manipulation system under scanning electron microscope (SEM) vacuum conditions. The experimental results show that the current–voltage curve appears as saw-tooth-like current changes including up and down steps, which signify the conductance and breakdown of carbon shells in the MWCNT bundle, respectively. Additionally, the power law nonlinear behavior of the current–voltage curve indicates that the MWCNT bundle is semiconducting. The molecular dynamics simulation explains that the electron transport between the inner carbon shells, between the outermost carbon shells and gold metal electrode and between the outermost carbons shells of two adjacent individual three-walled carbon nanotubes (TWCNTs) is through their radial deformation. Density functional theory (DFT) calculations elucidate the electron transport mechanism between the gold surface and double-wall carbon nanotube (DWCNT) and between the inner and outermost carbon shells of DWCNT using the charge density difference, electrostatic potential and partial density of states.


Energies ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2508
Author(s):  
Pascal Kölblin ◽  
Alexander Bartler ◽  
Marvin Füller

Electroluminescence (EL) measurements allow one to detect damages and/or defective parts in photovoltaic systems. In principle, it seems possible to predict the complete current/voltage curve from such pictures even automatically. However, such a precise analysis requires image corrections and calibrations, because vignetting and lens distortion cause signal and spatial distortions. Earlier works on crystalline silicon modules used the cell gap joints (CGJ) as calibration pattern. Unfortunately, this procedure fails if the detection of the gaps is not accurate or if the contrast in the images is low. Here, we enhance the automated camera calibration algorithm with a reliable pattern detection and analyze quantitatively the quality of the process. Our method uses an iterative Hough transform to detect line structures and uses three key figures (KF) to separate detected busbars from cell gaps. This method allows a reliable identification of all cell gaps, even in noisy images or if disconnected edges in PV cells exist or potential induced degradation leads to a low contrast between active cell area and background. In our dataset, a subset of 30 EL images (72 cell each) forming grid (5×11) lead to consistent calibration results. We apply the calibration process to 997 single module EL images of PV modules and evaluate our results with a random subset of 40 images. After lens distortion correction and perspective correction, we analyze the residual deviation between ideal target grid points and the previously detected CGJ after applied distortion and perspective correction. For all of the 2200 control points in the 40 evaluation images, we achieve a deviation of less than or equal to 3 pixels. For 50% of the control points, a deviation of of less than or equal to 1 pixel is reached.


Author(s):  
Rafael Peña ◽  
Ana M. Diez‐Pascual ◽  
Pilar García Díaz ◽  
Lara Velasco Davoise

Sign in / Sign up

Export Citation Format

Share Document