multistage hydraulic fracturing
Recently Published Documents


TOTAL DOCUMENTS

137
(FIVE YEARS 63)

H-INDEX

10
(FIVE YEARS 4)

2022 ◽  
Author(s):  
Jin Tang ◽  
Ding Zhu

Abstract In multistage hydraulic fracturing treatments, the combination of extreme large-scale pumping (high rate and volume) and the high heterogeneity of the formation (because of large contact area) normally results in complex fracture growth that cannot be simply modeled with conventional fracture models. Lack of understanding of the fracturing mechanism makes it difficult to design and optimize hydraulic fracturing treatments. Many monitoring, testing and diagnosis technologies have been applied in the field to describe hydraulic fracture development. Strain rate measured by distributed acoustic sensor (DAS) is one of the tools for fracture monitoring in complex completion scenarios. DAS measures far-field strain rate that can be of assistance for fracture characterization, cross-well fracture interference identification, and well stimulation efficiency evaluation. Many field applications have shown DAS responses on observation wells or surrounding producers when a well in the vicinity is fractured. Modeling and interpreting DAS strain rate responses can help quantitatively map fracture propagation. In this work, a methodology is developed to generate the simulated strain-rate responds to assumed fracture systems. The physical domain contains a treated well that the generate strain variation in the domain because of fracturing, and an observation well that has fiber-optic sensor installed along it to measure the strain rate responses to the fracture propagation. Instead of using a complex fracture model to forward simulate fracture propagation, this work starts from a simple 2D fracture propagation model to provide hypothetical fracture geometries in a relatively reasonable and acceptable range for both single fracture case and multiple fracture case. Displacement discontinuity method (DDM) is formulated to simulate rock deformation and strain rate responds on fiber-optic sensors. At each time step, fracture propagation is first allowed, then stress, displacement and strain field are estimated as the fracture approaches to the observation well. Afterward, the strain rate is calculated as fracture growth to generate patterns as fracture approaching. Extended simulation is conducted to monitor fracture propagation and strain rate responses. The patterns of strain rate responses can be used to recognize fracture development. Examples of strain rate responses for different fracturing conditions are presented in this paper. The relationship of injection rate distribution and strain rate responses is investigated to show the potential of using DAS measurements to diagnose multistage hydraulic fracturing treatments.


2021 ◽  
Author(s):  
Syed Muhammad ◽  
Mohammed Kurdi ◽  
Ali Momin ◽  
Muzzammil Shakeel ◽  
Roberto Vega ◽  
...  

Abstract The multistage hydraulic fracturing technique is considered to be one of the most effective stimulation techniques used for exploiting unconventional plays. The use of dissolvable frac plugs in multistage hydraulic fracturing has the potential to reduce well intervention requirements. Applicability of dissolvable frac plugs, as an integral part of plug and perf operations, in Middle East unconventional plays presents a myriad of technical challenges associated with high-pressure and high-temperature (HPHT) well conditions. Two counteracting drivers coexist in dissolvable frac plug design: 1) The need for the frac plug to withstand well conditions during the entire frac stage operational cycle and 2) the requirement for the frac plug to dissolve as quickly as possible after the stimulation treatment has been placed. The HPHT conditions of the wells utilizing dissolvable frac plugs adds to the complexity of not only the plug design, but also its associated deployment operational procedures. The main premise of the functional methodology of dissolvable frac plugs involves a chain reaction being triggered in the presence of specific fluids under specific temperature conditions. After the commencement of the degradation/dissolution chain reaction process, the useful lifetime of the frac plug begins to deplete, where the degradation chain reaction accelerates with increasing temperature exposure. Site operations will then conform to expedited practices to minimize undesired exposure time. This would minimize the risks of degradation/dissolution before plug setting, plug test, and actual stimulation treatment placement. Based on the HPHT well conditions of Middle Eastern unconventional plays, a structured process was put in place to satisfy the define, assess, select, and execute phases of the initiative The inevitable occurrences of unforeseen complications during operational deployments served to accelerate the learning curve for the continued utilization of dissolvable frac plugs. Operational issues ranging from electric line unit complications to frac pump downtime during the initial frac plug deployments compromised the structural integrity and functionality of the dissolvable frac plugs. Recognizing that exposure time was critical to maintaining the structural integrity of the plug, best practices were derived and enforced to minimize said exposure time. In addition, slight design modifications were made to specific components of the plug to increase its robustness while not compromising the desired degradation rates. The adoption of these mitigating measures has resulted in the acceptance of the dissolvable frac plug as the standard plug option for all plug and perf operations. The vast experience gained during the deployment of more than 1,000 dissolvable frac plugs for hydraulic fracturing stages in a Middle Eastern country has served as a basis to conceive a list of best practices to address mitigating unforeseen complications. These best practices are enforced to minimize plug exposure time, which in turn maximizes the probability of plug utilization success.


2021 ◽  
Author(s):  
Vitaly Virt ◽  
Vladimir Kosolapov ◽  
Vener Nagimov ◽  
Andrey Salamatin ◽  
Yulia Fesina ◽  
...  

Abstract Profitable development of hard-to-recover reserves often involves drilling of horizontal wells with multistage hydraulic fracturing to increase the oil recovery factor. Usually to monitor the fracture sweep efficiency, pressure transient analysis is used. However, in case of several fractures this method delivers only average hydrodynamic parameters of the well-fracture system. This paper illustrates the value of temperature logging data and demonstrates possibilities of the 3-D thermo-mechanical modelling in evaluating the differential efficiency of multi-stage hydraulic fracturing.


2021 ◽  
Author(s):  
Nabila Lazreq ◽  
Anwar Alam ◽  
Taliwati Ao ◽  
Anil Singh Negi ◽  
W.D. Von Gotten

Abstract Tight Oil Unconventional Reservoirs are challenging when it comes to development and enhancement of production. Transverse Multistage Hydraulic fracturing technique is widely used to maximize production from unconventional reservoirs, however it can be quite challenging when it comes down to execution across longer Tight Oil Horizontal laterals. The paper describes in full the various aspect of technical and operational planning in order to successfully execute highest number of Frac Stages in a well in UAE across a lateral length of 5300 ft This paper will describe an Integrated Field development Study that included building of Geomechanical Model for in-situ stress characterization and rock elastic properties for 3D Hydraulic Fracture Modelling. The fully 3D Hydraulic Fracture model assisted in geometrically spacing, finalizing and optimizing the number of Frac Stages across the horizontal Lateral. In order to optimize the design, specialized cores studies were conducted as part of the process such as Steady State measurements of permeability. In this paper the testing part will be describe in full and how the study was incorporated in the state-of-art Frac Simulator to ensure optimized frac design and realistic deliverable. The paper focusses on the operation planning, execution and efficiency. This includes frac stages execution, pump down plug and perf, number of cluster optimization & cluster spacing, milling, cleanout and flowback. Also in order to quantify the contribution from each stage, tracer services was utilized which will be detailed in the paper. Finally the paper will also cover the Well Testing strategy, which is one of the crucial aspect of the well deliverability. API Lab and Composition Analysis of Oil & Gas Samples were also conducted post fracturing as part of the study. The overall planning and execution of this well will become a guide and will be utilized for future well and frac design, which will be discussed in the paper. This integrated approach will be utilized in planning and designing future wells. The post fracturing data and production data collected from the well will help in further Frac Stage optimization which will lead to overall cost optimization


2021 ◽  
Author(s):  
Sudad H Al-Obaidi ◽  
Hofmann M ◽  
Khalaf FH ◽  
Hiba H Alwan

The efficiency of gas injection for developing terrigenous deposits within a multilayer producing object is investigated in this article. According to the results of measurements of the 3D hydrodynamic compositional model, an assessment of the oil recovery factor was made. In the studied conditions, re-injection of the associated gas was found to be the most technologically efficient working agent. The factors contributing to the inefficacy of traditional methods of stimulating oil production such as multistage hydraulic fracturing when used to develop low-permeability reservoirs have been analysed. The factors contributing to the inefficiency of traditional oil-production stimulation methods, such as multistage hydraulic fracturing, have been analysed when they are applied to low-permeability reservoirs. The use of a gas of various compositions is found to be more effective as a working agent for reservoirs with permeability less than 0.005 μm2. Ultimately, the selection of an agent for injection into the reservoir should be driven by the criteria that allow assessing the applicability of the method under specific geological and physical conditions. In multilayer production objects, gas injection efficiency is influenced by a number of factors, in addition to displacement, including the ratio of gas volumes, the degree to which pressure is maintained in each reservoir, as well as how the well is operated. With the increase in production rate from 60 to 90 m3 / day during the re-injection of produced hydrocarbon gas, this study found that the oil recovery factor increased from 0.190 to 0.229. The further increase in flow rate to 150 m3 / day, however, led to a faster gas breakthrough, a decrease in the amount of oil produced, and a decrease in the oil recovery factor to 0.19. Based on the results of the research, methods for stimulating the formation of low-permeability reservoirs were ranked based on their efficacy.


Author(s):  
Sudad H AL-Obaidi ◽  
Miel Hofmann ◽  
Falah H. Khalaf ◽  
Hiba H. Alwan

The efficiency of gas injection for developing terrigenous deposits within a multilayer producing object is investigated in this article. According to the results of measurements of the 3D hydrodynamic compositional model, an assessment of the oil recovery factor was made. In the studied conditions, re-injection of the associated gas was found to be the most technologically efficient working agent. The factors contributing to the inefficacy of traditional methods of stimulating oil production such as multistage hydraulic fracturing when used to develop low-permeability reservoirs have been analyzed. The factors contributing to the inefficiency of traditional oil-production stimulation methods, such as multistage hydraulic fracturing, have been analysed when they are applied to low-permeability reservoirs. The use of a gas of various compositions is found to be more effective as a working agent for reservoirs with permeability less than 0.005 µm2. Ultimately, the selection of an agent for injection into the reservoir should be driven by the criteria that allow assessing the applicability of the method under specific geological and physical conditions. In multilayer production objects, gas injection efficiency is influenced by a number of factors, in addition to displacement, including the ratio of gas volumes, the degree to which pressure is maintained in each reservoir, as well as how the well is operated. With the increase in production rate from 60 to 90 m3 / day during the re-injection of produced hydrocarbon gas, this study found that the oil recovery factor increased from 0.190 to 0.229. The further increase in flow rate to 150 m3 / day, however, led to a faster gas breakthrough, a decrease in the amount of oil produced, and a decrease in the oil recovery factor to 0.19 Based on the results of the research, methods for stimulating the formation of low-permeability reservoirs were ranked based on their efficacy.


2021 ◽  
Author(s):  
Kirill Victorovich Mironenko ◽  
Oleg Leonidovich Voytekhin ◽  
Vladimir Vladimirovich Marchenko

Abstract Currently, the vast majority of the oil fields of the Republic of Belarus are at the final stage of development. In this connection, in order to expand the resource base, Belarusian oil companies are assigned with the task of searching, exploring and developing hard-to-recover reserves. In recent years, a number of geological works have been carried out to search and study the sedimentary cover rocks of the Belarusian part of the Pripyat Trough, the results of these works were the discovery of promising deposits of the Petrikov Horizon of the Upper Devonian. These deposits are represented by dense fractured carbonate rocks with ultra-low permeability (less than 0.01 mD) and low effective porosity (up to 10%). The most promising technology for the development of such reservoirs is the drilling of horizontal wells and the subsequent implementation of Multistage hydraulic fracturing. This article presents the experience of developing ultra-low-permeability reservoirs in the Republic of Belarus in the period 2014-2021, briefly describes the main technologies used, the evolution of technological solutions for effective involvement in the active development of hard-to-recover reserves.


Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-17
Author(s):  
Ali Mahmoud ◽  
Ahmed Gowida ◽  
Murtada Saleh Aljawad ◽  
Mustafa Al-Ramadan ◽  
Ahmed Farid Ibrahim

Multistage hydraulic fracturing is a technique to extract hydrocarbon from tight and unconventional reservoirs. Although big advancements occurred in this field, understanding of the created fractures location, size, complexity, and proppant distribution is in its infancy. This study provides the recent advances in the methods and techniques used to diagnose hydraulic fractures in unconventional formations. These techniques include tracer flowback analysis, fiber optics such as distributed temperature sensing (DTS) and distributed acoustic sensing (DAS), tiltmeters, microseismic monitoring, and diagnostic fracture injection tests (DFIT). These techniques are used to estimate the fracture length, height, width, complexity, azimuth, cluster efficiency, fracture spacing between laterals, and proppant distribution. Each technique has its advantages and limitations, while integrating more than one technique in fracture diagnostics might result in synergies, leading to a more informative fracture description. DFIT analysis is critical and subjected to the interpreter’s understanding of the process and the formation properties. Hence, the applications of machine learning in fracture diagnostics and DFIT analysis were discussed. The current study presents an extensive review and comparison between different multistage fracture diagnostic methods, and their applicability is provided. The advantages and the limitations of each technique were highlighted, and the possible areas of future research were suggested.


2021 ◽  
Author(s):  
Vil Syrtlanov ◽  
Yury Golovatskiy ◽  
Konstantin Chistikov ◽  
Dmitriy Bormashov

Abstract This work presents the approaches used for the optimal placement and determination of parameters of hydraulic fractures in horizontal and multilateral wells in a low-permeability reservoir using various methods, including 3D modeling. The results of the production rate of a multilateral dualwellbore well are analyzed after the actual hydraulic fracturing performed on the basis of calculations. The advantages and disadvantages of modeling methods are evaluated, recommendations are given to improve the reliability of calculations for models with hydraulic fracturing (HF)/ multistage hydraulic fracturing (MHF).


2021 ◽  
Author(s):  
Mikhail Yurievich Golenkin ◽  
Denis Vladimirovich Eliseev ◽  
Alexander Anatolyevich Zemchikhin ◽  
Alexey Alexandrovich Borisenko ◽  
Akhmat Sakhadinovich Atabiyev ◽  
...  

Abstract The paper describes the results of the first multistage hydraulic fracturing operations in Russia on the Caspian Sea shelf in the gas condensate and oil deposits of the Aptian formation of V. Filanovsky field. In addition to the small productive formation depth, long horizontal sections with a complex trajectory and high collapse gradients due to large zenith angles when passing the Albian and Aptian deposits of poorly consolidated sandstones are an additional challenge for choosing a multistage hydraulic fracturing assembly. The above features require the use of modern sand control screens with enhanced frac sleeves. A design was developed which includes frac sleeves and sand control screens that can withstand multiple cycles of hydraulic impact during hydraulic fracturing, as well as many opening/closing cycles. A seawater-based frac fluid system was applied. The frac fleet was located on a pontoon, the coiled tubing – on a platform. For the first time in Russia, a 2-5/8 inch coiled tubing with a complex-type friction reducing system was used to switch coupling/sleeves in conditions of very long horizontal sections, complex trajectories, and high friction coefficients. The minimum distances between the screen's sliding sleeves and frac sleeves did not prevent from performing manipulations in complex environment. For well cleaning, the frac assemblies of reverse rotary-pulse and rotary-directional types were used. At the first stage of the project, the development of an optimal method of well completion was successfully implemented. Due to the close interaction of the operating company, service company, and science & engineering team of the operator, for the first time in Russia the design of downhole equipment with the use of advanced technologies of sand control screens, frac sleeves was presented. This solution has proved its effectiveness – the downhole equipment has retained its operational properties after a long period of well operation and further in the process of hydraulic fracturing. At the second stage of the project, 32 MSHF operations were performed at four wells. To reduce nonproductive time and operational risks, a satellite communication complex was additionally deployed on the pontoon to join the engineering centers of Astrakhan, Moscow, and Houston. After finishing the well development, the design indicators for formation fluid rates were achieved, which proved the effectiveness of the stimulation of the field's target objects – this opens great prospects for further development of low-permeability reservoirs at offshore sites in the Caspian Sea. The successful project implementation and the achievement of the design values of oil flow rates has expanded the possibilities of commercial operation of the low-permeable Aptian formation, complicated by the presence of a gas cap and underlying water. A solution was presented for working in extended horizontal well sections with 2-5/8 inch coiled tubing together with a complex-type mechanical friction reducing system. The economic effect was achieved when solving tasks of manipulating mechanical screen couplings and frac port sleeves without the involvement of downhole tractors. The use of new solutions in the completion assembly made it possible to eliminate additional sand ingress problems.


Sign in / Sign up

Export Citation Format

Share Document