cluster phase
Recently Published Documents


TOTAL DOCUMENTS

76
(FIVE YEARS 10)

H-INDEX

19
(FIVE YEARS 1)

2021 ◽  
pp. 4121-4147
Author(s):  
Ruwaida M. Yas ◽  
Sokaina Hashim

     The rapid evolution of wireless networking technologies opens the door to the evolution of the Wireless Sensor Networks (WSNs) and their applications in different fields. The WSN consists of small energy sensor nodes used in a harsh environment. The energy needed to communicate between the sensors networks can be identified as one of the major challenges. It is essential to avoid massive loss, or loss of packets, as well as rapid energy depletion and grid injustice, which lead to lower node efficiency and higher packet delivery delays. For this purpose, it was very important to track the usage of energy by nodes in order to improve general network efficiency by the use of intelligent methods to reduce the energy used to extend the life of the WSN and take successful routing decisions. For these reasons, designing an energy-efficient system that utilizes intelligent approaches is considered as the most powerful way to prolong the lifetime of the WSN. The proposed system is divided into four phases (sensor deployment phase, clustering phase, intra-cluster phase, and inter-cluster phase). Each of these phases uses a different intelligent algorithm with some enhancements. The performance of the proposed system was analyzed and evaluations were elaborated with well-known existing routing protocols. To assess the proficiency of the proposed system and evaluate the endurance of the network, efficiency parameters such as network lifetime, energy consumption, and packet delivery to the Sink (Base station) were exploited. The experimental outcomes justify that the proposed system surpasses the existing mechanisms by 50%.


2021 ◽  
Vol 31 (3) ◽  
pp. 203-213
Author(s):  
Oleksandr Osetskyi ◽  
◽  
Tetyana Gurina ◽  
Anna Poliakova ◽  
Stanislav Sevastianov ◽  
...  

For the first time the possibility of using thermomechanical analysis to construct the fragments of state diagrams of cryoprotective solutions in the zone of glass transition temperatures has been considered. A method for studying cluster crystallization of cryoprotective solutions based on thermomechanical curves has been developed. The parameters of thermomechanical curves of frozen aqueous solutions of dimethyl sulfoxide (DMSO), polyethylene oxide 1500 (PEO-1500), glycerol were analyzed and the relationship between these parameters and the cluster crystallization kinetics for these solutions was established. On the basis of experimentally obtained thermomechanical curves for the frozen solutions of DMSO and PEO-1500 the possibility of formation of clusters of two types has been shown: on the basis of ice and cryoprotective substance microcrystals. Additional experimental data were obtained to construct a complete state diagrams of cryoprotective solutions, which include the existing cluster phase areas.


2021 ◽  
Author(s):  
Dan Hudson ◽  
Travis J. Wiltshire ◽  
Martin Atzmueller

In order to support the burgeoning field of research into interpersonal synchrony, we present an open-source software package: multiSyncPy. Multivariate synchrony goes beyond the bivariate case and can be useful for quantifying how groups, teams, and families coordinate their behaviors, or estimating the degree to which multiple modalities from an individual become synchronized. Our package includes state-of-the-art multivariate methods including symbolic entropy, multidimensional recurrence quantification, coherence, the cluster-phase ‘Rho’ metric, and a statistical test based on the Kuramoto order parameter. We also include functions for two surrogation techniques to compare the observed coordination dynamics with chance levels. Taken together, our collation and presentation of these make the study of interpersonal synchronization and coordination dynamics applicable to larger, more complex and often more ecologically valid study designs. In this work, we summarize the relevant theoretical background and present illustrative practical examples as well as guidance for the usage of our package - using synthetic as well as empirical data. Furthermore, we provide a discussion of our work and software and outline interesting further directions and perspectives. multiSyncPy is freely available under the LGPL license at: https://github.com/cslab-hub/multiSyncPy, and also available at the Python package index.


Author(s):  
José Ruiz-Franco ◽  
Emanuela Zaccarelli

In this review, we discuss recent advances in the investigation of colloidal systems interacting via a combination of short-range attraction and long-range repulsion. The prototypical examples of this phenomenology are charged colloids with depletion interactions, but the results apply, to a large extent, also to suspensions of globular proteins, clays, and, in general, to systems with competing attractive (hydrophobic) and repulsive (polar) contributions. After a brief introduction to the problem, we focus on the three disordered states that characterize these systems: equilibrium cluster phase, equilibrium gel, and Wigner glass of clusters. We provide a comparison of their static and dynamic observables, mainly by means of numerical simulations. Next, we discuss the few available studies on their viscoelastic properties and on their response to an external shear. Finally, we provide a summary of the current findings and also raise the main open questions and challenges for the future in this topic. Expected final online publication date for the Annual Review of Condensed Matter Physics, Volume 12 is March 10, 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.


Sensors ◽  
2020 ◽  
Vol 20 (17) ◽  
pp. 4990
Author(s):  
Daniel Carrilho ◽  
Micael Santos Couceiro ◽  
João Brito ◽  
Pedro Figueiredo ◽  
Rui J. Lopes ◽  
...  

The ecological dynamics approach to interpersonal relationships provides theoretical support to the use of kinematic data, obtained with sensor-based systems, in which players of a team are linked mainly by information from the performance environment. Our goal was to capture the properties of synergic behavior in football, using spatiotemporal data from one match of the 2018 FIFA WORLD CUP RUSSIA, to explore the application of player-ball-goal angles in cluster phase analysis. Linear mixed effects models were used to test the statistical significance of different effects, such as: team, half(-time), role and pitch zones. Results showed that the cluster phase values (synchronization) for the home team, had a 3.812×10−2±0.536×10−2 increase with respect to the away team (X2(41)=259.8, p<0.001) and that changing the role from with ball to without ball increased synchronization by 16.715×10−2±0.283×10−2 (X2(41)=12227.0, p<0.001). The interaction between effects was also significant. The player-team relative phase, the player-ball-goal angles relative frequency and the team configurations, showed that variations of synchronization might indicate critical performance changes (ball possession changes, goals scored, etc.). This study captured the ongoing player-environment link and the properties of team synergic behavior, supporting the use of sensor-based data computations in the development of relevant indicators for tactical analysis in sports.


2020 ◽  
Vol 494 (1) ◽  
pp. 97-107 ◽  
Author(s):  
Sergiy Silich ◽  
Guillermo Tenorio-Tagle ◽  
Sergio Martínez-González ◽  
Jean Turner

ABSTRACT We discuss a theoretical model for the early evolution of massive star clusters and confront it with the ALMA, radio, and infrared observations of the young stellar cluster highly obscured by the molecular cloud D1 in the nearby dwarf spheroidal galaxy NGC 5253. We show that a large turbulent pressure in the central zones of D1 cluster may cause individual wind-blown bubbles to reach pressure confinement before encountering their neighbours. In this case, stellar winds energy is added to the hot shocked wind pockets of gas around individual massive stars that leads them to meet and produce a cluster wind in time-scales less than 105 yr. In order to inhibit the possibility of cloud dispersal, or the early negative star formation feedback, one should account for mass loading that may come, for example, from pre-main-sequence (PMS) low-mass stars through photoevaporation of their protostellar discs. Mass loading at a rate in excess of 8 × 10−9 M⊙ yr−1 per each PMS star is required to extend the hidden star cluster phase in this particular cluster. In this regime, the parental cloud remains relatively unperturbed, while pockets of molecular, photoionized and hot gas coexist within the star-forming region. Nevertheless, the most likely scenario for cloud D1 and its embedded cluster is that the hot shocked winds around individual massive stars should merge at an age of a few million of years when the PMS star protostellar discs vanish and mass loading ceases that allows a cluster to form a global wind.


Soft Matter ◽  
2020 ◽  
Vol 16 (4) ◽  
pp. 990-1001 ◽  
Author(s):  
Iliya D. Stoev ◽  
Tianyang Cao ◽  
Alessio Caciagli ◽  
Jiaming Yu ◽  
Christopher Ness ◽  
...  

DNA nanostars with sticky, single-stranded DNA overhangs, are known to form thermally reversible, viscoelastic networks. Here we show that introducing the right flexibility will rather lead to a cluster phase with a much reduced viscosity then an elastic hydrogel.


2019 ◽  
Author(s):  
Ibraheem Alshareedah ◽  
Taranpreet Kaur ◽  
Jason Ngo ◽  
Hannah Seppala ◽  
Liz-Audrey Djomnang Kounatse ◽  
...  

AbstractIn eukaryotic cells, ribonucleoproteins (RNPs) form mesoscale condensates by liquid-liquid phase separation that play essential roles in subcellular dynamic compartmentalization. The formation and dissolution of many RNP condensates are finely dependent on the RNA-to-RNP ratio, giving rise to a window-like phase separation behavior. This is commonly referred to as reentrant liquid condensation (RLC). Here, using RNP-inspired polypeptides with low-complexity RNA-binding sequences as well as the C-terminal disordered domain of the ribonucleoprotein FUS as model systems, we investigate the molecular driving forces underlying this non-monotonous phase transition. We show that an interplay between short-range cation-π attractions and long-range electrostatic forces governs the heterotypic RLC of RNP-RNA complexes. Short-range attractions, which can be encoded by both polypeptide chain primary sequence and nucleic acid base sequence, are activated by RNP-RNA condensate formation. After activation, the short-range forces regulate material properties of polypeptide-RNA condensates and subsequently oppose their reentrant dissolution. In the presence of excess RNA, a competition between short-range attraction and long-range electrostatic repulsion drives the formation of a colloid-like cluster phase. With increasing short-range attraction, the fluid dynamics of the cluster phase is arrested, leading to the formation of a colloidal gel. Our results reveal that phase behavior, supramolecular organization, and material states of RNP-RNA assemblies are controlled by a dynamic interplay between molecular interactions at different length scales.


Sign in / Sign up

Export Citation Format

Share Document