edge radiation
Recently Published Documents


TOTAL DOCUMENTS

72
(FIVE YEARS 12)

H-INDEX

13
(FIVE YEARS 1)

Author(s):  
Patrick Maget ◽  
Pierre Manas ◽  
Jean-Francois Artaud ◽  
Clarisse Bourdelle ◽  
Jerome B Bucalossi ◽  
...  

Abstract Achieving a successful plasma current ramp-up in a full Tungsten tokamak can be challenging due to the large core radiation (and resulting low core temperature) that can be faced with this heavy metallic impurity if its relative concentration is too high. Nitrogen injection during the plasma current ramp-up of WEST discharges greatly improves core temperature and Magneto-Hydro-Dynamic stability. Experimental measurements and integrated simulations with the RAPTOR code complemented with the Qualikiz Neural Network for computing turbulent transport allow a detailed understanding of the mechanisms at play. Increased edge radiation during this transient phase is shown to improve confinement properties, driving higher core temperature and better MHD stability. This also leads to increased operation margins with respect to Tungsten contamination.


Author(s):  
Shigeru Koda ◽  
Yuichi Takabayashi ◽  
Tatsuo Kaneyasu ◽  
Yoshitaka Iwasaki

Abstract The intensification effect of edge radiation due to the periodic alignment of three-pole wigglers was analytically and numerically investigated. The radiation properties were studied using a simple model that had an alternating alignment of straight sections and large gradient orbit sections due to the use of three-pole wigglers. The angular distribution of the radiation was concentrated on a concentric circle. The peak intensity of the radiation was roughly on the same order as that of the peak radiation of a planar undulator. The spectrum of the radiation had a characteristic structure that was rather similar to the higher harmonic structure of undulator radiation. A numerical study showed that a planar undulator with a specific K value satisfies approximately the radiation intensification condition due to the periodic alignment of the three-pole wigglers. The intensified edge radiation is included in the undulator radiation.


2022 ◽  
Vol 12 (2) ◽  
pp. 626
Author(s):  
Norihiro Sei ◽  
Heishun Zen ◽  
Hideaki Ohgaki

Spectra of coherent edge radiation (CER) were observed at the S-band linac facility of Kyoto University Free Electron Laser. A local maximum was observed in the CER spectrum on-crest operation of the radio frequency (RF) field. As the phase of the RF field was shifted from the crest, the frequency of the maximum decreased, and the CER spectrum approached a spectrum of Gaussian-distributed electrons in a bunch. It was found that this strange spectrum can be explained by a model in which a satellite pulse exists around a main pulse in the electron bunch. Furthermore, it demonstrated that CER is an effective tool for monitoring the shape of the electron bunch.


Electronics ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 539
Author(s):  
Ryan P. Tortorich ◽  
William Morell ◽  
Elizabeth Reiner ◽  
William Bouillon ◽  
Jin-Woo Choi

Because modern electronic systems are likely to be exposed to high intensity radiated fields (HIRF) environments, there is growing interest in understanding how electronic systems are affected by such environments. Backdoor coupling in particular is an area of concern for all electronics, but there is limited understanding about the mechanisms behind backdoor coupling. In this work, we present a study on printed circuit board (PCB) backdoor coupling and the effects of via fencing. Existing work focuses on ideal stackups and indicates that edge radiation is significantly reduced by via fencing. In this study, both full wave electromagnetic modeling and experimental verification are used to investigate both ideal and practical PCB stackups. In the ideal scenario, we find that via fencing substantially reduces coupling, which is consistent with prior work on emissions. In the practical scenario, we incorporate component footprints and traces which naturally introduce openings in the top ground plane. Both simulation and experimental data indicate that via fencing in the practical scenario does not substantially mitigate coupling, suggesting that PCB edge coupling is not the dominant coupling mechanism, even at varying angles of incidence and polarization.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Norihiro Sei ◽  
Takeshi Sakai ◽  
Yasushi Hayakawa ◽  
Yoske Sumitomo ◽  
Kyoko Nogami ◽  
...  

AbstractA coupling device, which can extract coherent edge radiation (CER) from an optical cavity for a free-electron laser (FEL) without damaging the FEL due to diffraction loss, was developed at Nihon University. We successfully observed the CER beam with a power of 1 mW or more in the terahertz range during FEL oscillation. It is revealed that the CER power changed with the detuning of the optical cavity and the dependence of the CER power on the detuning length differs from that of the FEL power. The measured CER spectra indicate that the longitudinal electron distribution in a bunch is modulated by the FEL oscillation with a period corresponding to the FEL slippage length. We herein report the characteristics of the CER with FEL oscillation in detail. These results demonstrate that the CER is excellent tool to reveal the overall effect of FEL interaction on electron distribution in a bunch.


Information ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 61
Author(s):  
Claudio Emma ◽  
Auralee Edelen ◽  
Adi Hanuka ◽  
Brendan O’Shea ◽  
Alexander Scheinker

We discuss the implementation of a suite of virtual diagnostics at the FACET-II facility currently under commissioning at SLAC National Accelerator Laboratory. The diagnostics will be used for the prediction of the longitudinal phase space along the linac, spectral reconstruction of the bunch profile, and non-destructive inference of transverse beam quality (emittance) while using edge radiation at the injector dogleg and bunch compressor locations. These measurements will be folded into adaptive feedbacks and Machine Learning (ML)-based reinforcement learning controls to improve the stability and optimize the performance of the machine for different experimental configurations. In this paper we describe each of these diagnostics with expected measurement results that are based on simulation data and discuss progress towards implementation in regular operations.


Author(s):  
Claudio Emma ◽  
Auralee Edelen ◽  
Adi Hanuk ◽  
Brendan O'Shea ◽  
Alexander Scheinker

We discuss the implementation of a suite of virtual diagnostics at the FACET-II facility currently under commissioning at SLAC National Accelerator Laboratory. The diagnostics will be used for prediction of the longitudinal phase space along the linac, spectral reconstruction of the bunch profile and non-destructive inference of transverse beam quality (emittance) using edge radiation at the injector dogleg and bunch compressor locations. These measurements will be folded in to adaptive feedbacks and ML-based reinforcement learning controls to improve the stability and optimize the performance of the machine for different experimental configurations. In this paper we describe each of these diagnostics with expected measurement results based on simulation data and discuss progress towards implementation in regular operations.


Author(s):  
Jian-Feng Li ◽  
Chun-Xu Mao ◽  
Duo-Long Wu ◽  
Liang-Hua Ye ◽  
Gary Zhang

2020 ◽  
Vol 62 (11) ◽  
pp. 2138-2142
Author(s):  
I. Kh. Akopyan ◽  
M. E. Labzovskaya ◽  
B. V. Novikov ◽  
A. Yu. Serov ◽  
N. G. Filosofov ◽  
...  

Acoustics ◽  
2020 ◽  
Vol 2 (3) ◽  
pp. 691-706
Author(s):  
Pavel Kholodov ◽  
Stéphane Moreau

Large Eddy Simulation is performed using the NASA Source Diagnostic Test turbofan at approach conditions (62% of the design speed). The simulation is performed in a periodic domain containing one fan blade (rotor-alone configuration). The aerodynamic and acoustic results are compared with experimental data. The dilatation field and the dynamic mode decomposition (DMD) are employed to reveal the noise sources around the rotor. The trailing-edge radiation is effective starting from 50% of span. The strongest DMD modes come from the tip region. Two major noise contributors are shown, the first being the tip noise and the second being the trailing-edge noise. The Ffowcs Williams and Hawkings’ (FWH) analogy is used to compute the far-field noise from the solid surface of the blade. The analogy is computed for the full blade, for its tip region (outer 20% of span) and for lower 80% of span to see the contribution of the latter. The acoustics spectrum below 6 kHz is dominated by the tip part (tip noise), whereas the rest of the blade (trailing-edge noise) contributes more beyond that frequency.


Sign in / Sign up

Export Citation Format

Share Document