blood oxygen level
Recently Published Documents


TOTAL DOCUMENTS

668
(FIVE YEARS 228)

H-INDEX

59
(FIVE YEARS 6)

2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Hong Chen ◽  
Jianzhong Yin ◽  
Che He ◽  
Yalin Wu ◽  
Miaomiao Long ◽  
...  

Objectives. The respiration could decrease the time synchronization between odor stimulation and data acquisition, consequently deteriorating the functional activation and hemodynamic response function (HRF) in olfactory functional magnetic resonance imaging (fMRI) with a conventional repetition time (TR). In this study, we aimed to investigate whether simultaneous multislice (SMS) technology with reduced TR could improve the blood oxygen level-dependent (BOLD) activation and optimize HRF modeling in olfactory fMRI. Methods. Sixteen young healthy subjects with normal olfaction underwent olfactory fMRI on a 3T MRI scanner using a 64 channel head coil. FMRI data were acquired using SMS acceleration at three different TRs: 3000 ms, 1000 ms, and 500 ms. Both metrics of BOLD activation (activated voxels, mean, and maximum t -scores) and the HRF modeling (response height and time to peak) were calculated in the bilateral amygdalae, hippocampi, and insulae. Results. The 500 ms and 1000 ms TRs both significantly improved the number of activated voxels, mean, and maximum t -score in the amygdalae and insulae, compared with a 3000 ms TR (all P < 0.05 ). But the increase of these metrics in the hippocampi did not reach a statistical significance (all P > 0.05 ). No significant difference in any BOLD activation metrics between TR 500 ms and 1000 ms was observed in all regions of interest (ROIs) (all P > 0.05 ). The HRF curves showed that higher response height and shorter time to peak in all ROIs were obtained at 500 ms and 1000 ms TRs compared to 3000 ms TR. TR 500 ms had a more significant effect on response height than TR 1000 ms in the amygdalae ( P = 0.017 ), and there was no significant difference in time to peak between TR 500 ms and 1000 ms in all ROIs (all P > 0.05 ). Conclusions. The fast image acquisition technique of SMS with reduced TR could significantly improve the functional activation and HRF curve in olfactory fMRI.


2021 ◽  
Vol 2 ◽  
Author(s):  
Kaleb Vinehout ◽  
Kelsey Tynes ◽  
Miguel R. Sotelo ◽  
Allison S. Hyngstrom ◽  
John R. McGuire ◽  
...  

Background: Botulinum NeuroToxin-A (BoNT-A) relieves muscle spasticity and increases range of motion necessary for stroke rehabilitation. Determining the effects of BoNT-A therapy on brain neuroplasticity could help physicians customize its use and predict its outcome.Objective: The purpose of this study was to investigate the effects of Botulinum Toxin-A therapy for treatment of focal spasticity on brain activation and functional connectivity.Design: We used functional Magnetic Resonance Imaging (fMRI) to track changes in blood oxygen-level dependent (BOLD) activation and functional connectivity associated with BoNT-A therapy in nine chronic stroke participants, and eight age-matched controls. Scans were acquired before BoNT-A injections (W0) and 6 weeks after the injections (W6). The task fMRI scan consisted of a block design of alternating mass finger flexion and extension. The voxel-level changes in BOLD activation, and pairwise changes in functional connectivity were analyzed for BoNT-A treatment (stroke W0 vs. W6).Results: BoNT-A injection therapy resulted in significant increases in brain activation in the contralesional premotor cortex, cingulate gyrus, thalamus, superior cerebellum, and in the ipsilesional sensory integration area. Lastly, cerebellar connectivity correlated with the Fugl-Meyer assessment of motor impairment before injection, while premotor connectivity correlated with the Fugl-Meyer score after injection.Conclusion: BoNT-A therapy for treatment of focal spasticity resulted in increased brain activation in areas associated with motor control, and cerebellar connectivity correlated with motor impairment before injection. These results suggest that neuroplastic effects might take place in response to improvements in focal spasticity.


2021 ◽  
pp. 0271678X2110622
Author(s):  
Mengyang Xu ◽  
Binshi Bo ◽  
Mengchao Pei ◽  
Yuyan Chen ◽  
Christina Y Shu ◽  
...  

Functional magnetic resonance imaging (fMRI) techniques using the blood-oxygen level-dependent (BOLD) signal have shown great potential as clinical biomarkers of disease. Thus, using these techniques in preclinical rodent models is an urgent need. Calibrated fMRI is a promising technique that can provide high-resolution mapping of cerebral oxygen metabolism (CMRO2). However, calibrated fMRI is difficult to use in rodent models for several reasons: rodents are anesthetized, stimulation-induced changes are small, and gas challenges induce noisy CMRO2 predictions. We used, in mice, a relaxometry-based calibrated fMRI method which uses cerebral blood flow (CBF) and the BOLD-sensitive magnetic relaxation component, R2′, the same parameter derived in the deoxyhemoglobin-dilution model of calibrated fMRI. This method does not use any gas challenges, which we tested on mice in both awake and anesthetized states. As anesthesia induces a whole-brain change, our protocol allowed us to overcome the former limitations of rodent studies using calibrated fMRI. We revealed 1.5-2 times higher CMRO2, dependent upon brain region, in the awake state versus the anesthetized state. Our results agree with alternative measurements of whole-brain CMRO2 in the same mice and previous human anesthesia studies. The use of calibrated fMRI in rodents has much potential for preclinical fMRI.


2021 ◽  
Vol 9 (12) ◽  
pp. 639-649
Author(s):  
Sandip Roy ◽  
Debanwita Ghosh ◽  
Debdulal Sau ◽  
Shubhrajit Nandy ◽  
Meghasweta Pal ◽  
...  

Nowadays, we are very conscious about our health because of how the covid-19 virus has changed our day-to-day life. IoT healthcare devices can be really helpful in this pandemic situation when we are all stuck in our homes. We have witnessed that IoT devices got very popular during this pandemic and the term ‘IoT’ also got really famous in the healthcare industry. If the hospital is far away from someone’s home, then using these portable monitoring devices one can keep track of their well-being. Health is the most important aspect for any individual, so in this paper, we propose a solution named the IoT-based Tetra Health Surveillance System (THSS) which helps us to monitor people who live by themselves or elderly people who want to continuously monitor their vitals due to underlying health conditions. Our proposed solution also displays the Temperature and Humidity, Blood pressure, Body Temperature, and SpO2/Blood Oxygen level at any given moment. This work will have a significant technical and commercial benefit because an individual can monitor all their vitals in one place and they don’t have to buy separate pieces of equipment to monitor each one of their vitals. This proposed device can be an all-in-one solution that is cost-effective and easy to use.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Franziska Hartung ◽  
Yuchao Wang ◽  
Marloes Mak ◽  
Roel Willems ◽  
Anjan Chatterjee

AbstractHumans are deeply affected by stories, yet it is unclear how. In this study, we explored two aspects of aesthetic experiences during narrative engagement - literariness and narrative fluctuations in appraised emotional intensity. Independent ratings of literariness and emotional intensity of two literary stories were used to predict blood-oxygen-level-dependent signal changes in 52 listeners from an existing fMRI dataset. Literariness was associated with increased activation in brain areas linked to semantic integration (left angular gyrus, supramarginal gyrus, and precuneus), and decreased activation in bilateral middle temporal cortices, associated with semantic representations and word memory. Emotional intensity correlated with decreased activation in a bilateral frontoparietal network that is often associated with controlled attention. Our results confirm a neural dissociation in processing literary form and emotional content in stories and generate new questions about the function of and interaction between attention, social cognition, and semantic systems during literary engagement and aesthetic experiences.


2021 ◽  
Vol 12 ◽  
Author(s):  
Ramana V. Vishnubhotla ◽  
Rupa Radhakrishnan ◽  
Kestas Kveraga ◽  
Rachael Deardorff ◽  
Chithra Ram ◽  
...  

Purpose: The purpose of this study was to investigate the effect of an intensive 8-day Samyama meditation program on the brain functional connectivity using resting-state functional MRI (rs-fMRI).Methods: Thirteen Samyama program participants (meditators) and 4 controls underwent fMRI brain scans before and after the 8-day residential meditation program. Subjects underwent fMRI with a blood oxygen level dependent (BOLD) contrast at rest and during focused breathing. Changes in network connectivity before and after Samyama program were evaluated. In addition, validated psychological metrics were correlated with changes in functional connectivity.Results: Meditators showed significantly increased network connectivity between the salience network (SN) and default mode network (DMN) after the Samyama program (p &lt; 0.01). Increased connectivity within the SN correlated with an improvement in self-reported mindfulness scores (p &lt; 0.01).Conclusion: Samyama, an intensive silent meditation program, favorably increased the resting-state functional connectivity between the salience and default mode networks. During focused breath watching, meditators had lower intra-network connectivity in specific networks. Furthermore, increased intra-network connectivity correlated with improved self-reported mindfulness after Samyama.Clinical Trials Registration: [https://clinicaltrials.gov], Identifier: [NCT04366544]. Registered on 4/17/2020.


2021 ◽  
Vol 11 (11) ◽  
pp. 1472
Author(s):  
Daniel J. Petrie ◽  
Sy-Miin Chow ◽  
Charles F. Geier

Pavlovian-to-instrumental transfer (PIT) refers to a phenomenon whereby a classically conditioned stimulus (CS) impacts the motivational salience of instrumental behavior. We examined behavioral response patterns and functional magnetic resonance imaging (fMRI) based effective connectivity during an avoidance-based PIT task. Eleven participants (8 females; Mage = 28.2, SD = 2.8, range = 25–32 years) completed the task. Effective connectivity between a priori brain regions engaged during the task was determined using hemodynamic response function group iterative multiple model estimation (HRF-GIMME). Participants exhibited behavior that was suggestive of specific PIT, a CS previously associated with a reinforcing outcome increased instrumental responding directed at the same outcome. We did not find evidence for general PIT; a CS did not significantly increase instrumental responding towards a different but related outcome. Using HRF-GIMME, we recovered effective connectivity maps among corticostriatal circuits engaged during the task. Group-level paths revealed directional effects from left putamen to right insula and from right putamen to right cingulate. Importantly, a direct effect of specific PIT stimuli on blood–oxygen-level-dependent (BOLD) activity in the left putamen was found. Results provide initial evidence of effective connectivity in key brain regions in an avoidance-based PIT task network. This study adds to the literature studying PIT effects in humans and employing GIMME models to understand how psychological phenomena are supported in the brain.


2021 ◽  
pp. 233-246
Author(s):  
Latesh Malik ◽  
Ameya Shahu ◽  
Sohan Rathod ◽  
Pranay Kuthe ◽  
Prachi Patil

2021 ◽  
Author(s):  
Finn Rabe ◽  
Sanne Kikkert ◽  
Nicole Wenderoth

It is well-established that vibrotactile stimulations elicit Blood-oxygen-level-dependent (BOLD) responses in somatotopically organized brain regions. Whether these somatotopic maps are modulated by working memory (WM) is still unknown. In our WM experiment, participants had to compare frequencies that were separated by a delay period. Vibrotactile stimuli were sequentially applied to either their right index or little finger. Using functional MRI, we investigated whether vibrotactile WM modulated neural activity in primary somatosensory (S1), an area that is known to contain individual finger representations. Our mass-univariate results revealed the well-described network of brain regions involved in WM. Interestingly, our mass-univariate results did not demonstrate S1 to be part of this network. However, when we parametrically modulated the time-binned regressors in our GLM we found that the delay activity in S1 and secondary somatosensory cortex (S2) was reflected in a U-shaped manner. Using multi-voxel pattern analysis (MVPA), an analysis technique that is more sensitive to subtle activity differences, we found finger-specific patterns of activation in the S1 hand area during the WM delay period. These results indicate that processes underlying WM modulate finger-specific representations during our discrimination task.


Sign in / Sign up

Export Citation Format

Share Document