parasite plasmodium falciparum
Recently Published Documents


TOTAL DOCUMENTS

766
(FIVE YEARS 122)

H-INDEX

77
(FIVE YEARS 7)

2022 ◽  
Author(s):  
Matthew Martinez ◽  
William David Chen ◽  
Marta Cova ◽  
Petra Andrea Molnár ◽  
Shrawan Kumar Mageswaran ◽  
...  

Apicomplexan parasites secrete the contents of rhoptries into host cells to permit their invasion and establishment of an infectious niche. The rhoptry secretory apparatus (RSA), which is critical for rhoptry secretion, was recently discovered in Toxoplasma and Cryptosporidium. It is positioned at the cell apex and associates with an enigmatic apical vesicle (AV), which docks one or two rhoptries at the site of exocytosis. The interplay among the rhoptries, the AV, and the parasite plasma membrane for secretion remains unclear. Moreover, it is unknown if a similar machinery exists in the deadly malaria parasite Plasmodium falciparum. In this study, we use in situ cryo-electron tomography to investigate the rhoptry secretion system in P. falciparum merozoites. We identify the presence of an RSA at the cell apex and a morphologically distinct AV docking the tips of the two rhoptries to the RSA. We also discover two new organizations: one in which the AV is absent with one of the two rhoptry tips docks directly to the RSA, and a second in which the two rhoptries fuse together and the common tip docks directly to the RSA. Interestingly, rhoptries among the three states show no significant difference in luminal volume and density, suggesting that the exocytosis of rhoptry contents has not yet occurred, and that these different organizations likely represent sequential states leading to secretion. Using subtomogram averaging, we reveal different conformations of the RSA structure corresponding to each state, including the opening of a gate-like density in the rhoptry-fused state. These conformational changes of the RSA uncover structural details of a priming process for major rhoptry secretion, which likely occur after initial interaction with a red blood cell. Our results highlight a previously unknown step in the process of rhoptry secretion and indicate a regulatory role for the conserved apical vesicle in host invasion by apicomplexan parasites.


2022 ◽  
Vol 219 (2) ◽  
Author(s):  
Ilka Wahl ◽  
Hedda Wardemann

The induction of protective humoral immune responses against sporozoite surface proteins of the human parasite Plasmodium falciparum (Pf) is a prime goal in the development of a preerythrocytic malaria vaccine. The most promising antibody target is circumsporozoite protein (CSP). Although PfCSP induces strong humoral immune responses upon vaccination, vaccine efficacy is overall limited and not durable. Here, we review recent efforts to gain a better molecular and cellular understanding of anti-PfCSP B cell responses in humans and discuss ways to overcome limitations in the induction of stable titers of high-affinity antibodies that might help to increase vaccine efficacy and promote long-lived protection.


2021 ◽  
Author(s):  
Holly Matthews ◽  
Jennifer McDonald ◽  
Francis Isidore G. Totanes ◽  
Catherine J Merrick

Malaria parasites undergo a single phase of sexual reproduction in their complex lifecycle, during which they cycle between mosquito and vertebrate hosts. Sexual reproduction occurs only at the point when parasites move into the mosquito host. It involves specialised, sexually committed cells called gametocytes, which develop very rapidly into mature gametes and then mate inside the mosquito midgut. The gamete development process is unique, involving unprecedentedly fast replication and cell division to produce male gametes. A single male gametocyte replicates its ~23Mb genome three times over to produce 8 genomes, segregates these into newly-assembled flagellated gamete cells and releases them to seek out female gametes, all within ~15 minutes. Here, for the first time, we use fluorescent labelling of de novo DNA synthesis to follow this process at the whole-cell and single-molecule levels, yielding several novel observations. Firstly, we confirm that no DNA replication occurs before gametogenesis is triggered, although the origin recognition complex protein Orc1 is abundant even in immature gametocytes. Secondly, between repeated rounds of DNA replication there is no detectable karyokinesis - in contrast to the repeated replicative rounds that occur in asexual schizonts. Thirdly, cytokinesis is clearly uncoupled from DNA replication, and can occur even if replication fails, implying a lack of cell cycle checkpoints. Finally the single-molecule dynamics of DNA replication are entirely different from those in asexual schizonts.


2021 ◽  
Author(s):  
Artur Scherf ◽  
Elie Hammam ◽  
Samia Miled ◽  
Frederic Bonhomme ◽  
Benoit Arcangioli ◽  
...  

DNA cytosine methylation and its oxidized products are important epigenetic modifications in mammalian cells. Although 5-methylcytosine (5mC) was detected in the human malaria parasite Plasmodium falciparum, the presence of oxidized 5mC forms remain to be characterized.Here we establish a protocol to explore nuclease-based DNA digestion for the extremely AT-rich genome of P. falciparum (>80% A+T) for quantitative LC-MS/MS analysis of 5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC) and 5-carboxylcytosine (5caC). We demonstrate the presence of 5hmC, 5fC and 5caC cytosine modifications in a DNMT2-only organism and observe striking ratio changes between 5mC and 5hmC during the 48-hour blood stage parasite development. Parasite-infected red blood cells cultured in different physiological oxygen concentrations revealed a shift in the cytosine modifications distribution towards the oxidized 5hmC and 5caC forms. In the absence of the canonical C5-DNA methyltransferase (DNMT1 and DNMT3A/B) in P. falciparum, we show that all cytosine modifications depend on the presence of DNMT2. We conclude that DNMT2 and oxygen levels are critical determinants that shape the dynamic cytosine epigenetic landscape in this human pathogen.


Author(s):  
Chayaphat Wongsombat ◽  
Yodying Yingchutrakul ◽  
Nattida Suwanakitti ◽  
Kantinan Leetanasaksakul ◽  
Sittiruk Roytrakul ◽  
...  

2021 ◽  
Author(s):  
Katelyn Vendrely Brenneman ◽  
Xue Li ◽  
Sudhir Kumar ◽  
Elizabeth Delgado ◽  
Lisa A. Checkley ◽  
...  

Background: Classical genetic crosses in malaria parasites involve isolation, genotyping, and phenotyping of multiple progeny parasites, which is time consuming and laborious. Bulk segregant analysis (BSA) offers a powerful and efficient alternative to identify loci underlying complex traits in the human malaria parasite, Plasmodium falciparum. Methods: We have used BSA, which combines genetic crosses using humanized mice with pooled sequencing of progeny populations to measure changes in allele frequency following selection with antimalarial drugs. We used dihydroartemisinin (DHA) drug selection in two genetic crosses (Mal31xKH004 and NF54xNHP1337). We specifically investigated how synchronization, cryopreservation, and the drug selection regimen of progeny pools impacted the success of BSA experiments. Findings: We detected a strong and repeatable quantitative trait locus (QTL) at chr13 kelch13 locus in both crosses, but did not detect QTLs at ferredoxin (fd), the apicoplast ribosomal protein S10 (arps10), multidrug resistance protein 2 (mdr2). QTLs were detected using synchronized, but not unsynchronized pools, consistent with the stage-specific action of DHA. We also successfully applied BSA to cryopreserved progeny pools. Interpretation: Our results provide proof-of-principal of the utility of BSA for rapid, robust genetic mapping of drug resistance loci. Use of cryopreserved progeny pools expands the utility of BSA because we can conduct experiments using archived progeny pools from previous genetic crosses. BSA provides a powerful approach that complements traditional QTL methods for investigating the genetic architecture of resistance to antimalarials, and to reveal new or accessory loci contributing to artemisinin resistance.


Sign in / Sign up

Export Citation Format

Share Document