odor molecule
Recently Published Documents


TOTAL DOCUMENTS

6
(FIVE YEARS 3)

H-INDEX

2
(FIVE YEARS 0)

2021 ◽  
Vol 23 (1) ◽  
pp. 277
Author(s):  
Yosuke Fukutani ◽  
Yuko Nakamura ◽  
Nonoko Muto ◽  
Shunta Miyanaga ◽  
Reina Kanemaki ◽  
...  

Vertebrate animals detect odors through olfactory receptors (ORs), members of the G protein-coupled receptor (GPCR) family. Due to the difficulty in the heterologous expression of ORs, studies of their odor molecule recognition mechanisms have progressed poorly. Functional expression of most ORs in heterologous cells requires the co-expression of their chaperone proteins, receptor transporting proteins (RTPs). Yet, some ORs were found to be functionally expressed without the support of RTP (RTP-independent ORs). In this study, we investigated whether amino acid residues highly conserved among RTP-independent ORs improve the functional expression of ORs in heterologous cells. We found that a single amino acid substitution at one of two sites (NBW3.39 and 3.43) in their conserved residues (E and L, respectively) significantly improved the functional expression of ORs in heterologous cells. E3.39 and L3.43 also enhanced the membrane expression of RTP-dependent ORs in the absence of RTP. These changes did not alter the odorant responsiveness of the tested ORs. Our results showed that specific sites within transmembrane domains regulate the membrane expression of some ORs.


2021 ◽  
Author(s):  
Nicolas Claverie ◽  
Pierrick Buvat ◽  
Jérôme Casas

AbstractWhen sampling odors, many insects are moving their antennae in a complex but repeatable fashion. Previous works with bees have tracked antennal movements in only two dimensions, with a low sampling rate and with relatively few odorants. A detailed characterization of the multimodal antennal movement patterns as function of olfactory stimuli is thus wanting. The aim of this study is to test for a relationship between the scanning movements and the properties of the odor molecule.We tracked several key locations on the antennae of 21 bumblebees at high frequency (up to 1200 fps) and in three dimensions while submitting them to puffs of 11 common odorants released in a low-speed continuous flow. To cover the range of diffusivity and molecule size of most odors sampled by bees, compounds as different as butanol and farnesene were chosen, with variations of 200% in molar masses. Water and paraffin were used as negative controls. Movement analysis was done on the tip, the scape and the base of the antennae tracked with the neural network Deeplabcut.Bees use a stereotypical motion of their antennae when smelling odors, similar across all bees, independently of the identity of the odors and hence their diffusivity. The variability in the movement amplitude among odors is as large as between individuals. The first oscillation mode at low frequencies and large amplitude (ca. 1-3 Hz, ca. 100°) is triggered by the presence of an odor and is in line with previous work, as is the speed of movement. The second oscillation mode at higher frequencies and smaller amplitude (40 Hz, ca. 0.1°) is constantly present. Antennae are quickly deployed when a stimulus is perceived, decorrelate their movement trajectories rapidly and oscillate vertically with a large amplitude and laterally with a smaller one. The cone of air space thus sampled was identified through the 3D understanding of the motion patterns.The amplitude and speed of antennal scanning movements seem to be function of the internal state of the animal, rather than determined by the odorant. Still, bees display an active olfaction strategy. First, they deploy their antennae when perceiving an odor rather than let them passively encounter it. Second, fast vertical scanning movements further increase the flow speed experienced by an antenna and hence the odorant capture rate. Finally, lateral movements might enhance the likelihood to locate the source of odor, similarly to the lateral scanning movement of insects at odor plume boundaries. Definitive proofs of this function will require the simultaneous 3D recordings of antennal movements with both the air flow and odor fields.


2021 ◽  
Vol 9 (1) ◽  
pp. 288-294
Author(s):  
Dewanand A. Meshram, Dipti D. Patil

Digital representation of odor has a basic principal of chemosensory organism of sensory molecules. A body organism responds to external odor environments. A body of animal/human perceives the odor in the form of molecule structure. But the questions still arises how that odor molecule is presented in the digital format. Also how it act a specific odor behavior. The mechanism used in animal/human body is to solve the problem as per thought process level. Thought process retrieve the stored molecule of odor in a visual smell. Similar concepts are carrying forward to store in a computer system with the help of electron. The system is applied to perform Machine-learned odor recognition from physico-chemical properties of volatile molecules. The properties of volatile molecules are to match the pattern of chemosensory organisms. Artificial intelligence is used to predict the molecule of smell by applying neural network. This paper focuses on the behavior of odors and its digital representation techniques for olfactory features.    


Author(s):  
Bert Ph. M. Menco

Vertebrate olfactory receptor cells are specialized neurons that have numerous long tapering cilia. The distal parts of these cilia line the interface between the external odorous environment and the luminal surface of the olfactory epithelium. The length and number of these cilia results in a large surface area that presumably increases the chance that an odor molecule will meet a receptor cell. Advanced methods of cryoprepration and immuno-gold labeling were particularly useful to preserve the delicate ultrastructural and immunocytochemical features of olfactory cilia required for localization of molecules involved in olfactory signal-transduction. We subjected olfactory tissues to freeze-substitution in acetone (unfixed tissues) or methanol (fixed tissues) followed by low temperature embedding in Lowicryl K11M for that purpose. Tissue sections were immunoreacted with several antibodies against proteins that are presumably important in olfactory signal-transduction.


Sign in / Sign up

Export Citation Format

Share Document