nf1 gene
Recently Published Documents


TOTAL DOCUMENTS

334
(FIVE YEARS 58)

H-INDEX

40
(FIVE YEARS 2)

Children ◽  
2022 ◽  
Vol 9 (1) ◽  
pp. 40
Author(s):  
Maria Lucia Sur ◽  
Ionel Armat ◽  
Genel Sur ◽  
Diana-Cristina Pop ◽  
Gabriel Samasca ◽  
...  

The three types of neurofibromatosis, namely type 1, type 2, and schwannomatosis, are generally associated with various benign tumors affecting the skin and the nervous system. On rare occasions, especially in patients with neurofibromatosis type 1 (NF1), malignant neoplasms may also be present, several of them possessing a more aggressive course than in individuals without this syndrome. As such, a clear delineation between the three variants of neurofibromatosis is crucial to establish the correct diagnosis and management, as well as predict the neoplasm-related outcomes. Neurofibromin, the principal product of the NF1 gene, is a potent inhibitor of cellular proliferation, having been linked to several key signaling pathways involved in tumor growth. Therefore, it may provide a useful therapeutic target for tumor management in these patients. In this article, we want to present the association between deficiency of neurofibromin and the consequences of the lack of this protein leading to different kinds of malignant tumors. The therapy is still uncertain and most therapeutic options are in development or clinical trials.


2021 ◽  
Vol 23 (1) ◽  
pp. 352
Author(s):  
Maximilian Scheer ◽  
Sandra Leisz ◽  
Eberhard Sorge ◽  
Olha Storozhuk ◽  
Julian Prell ◽  
...  

Neurofibromatosis type 1 (NF1) gene mutations or alterations occur within neurofibromatosis type 1 as well as in many different malignant tumours on the somatic level. In glioblastoma, NF1 loss of function plays a major role in inducing the mesenchymal (MES) subtype and, therefore defining the most aggressive glioblastoma. This is associated with an immune signature and mediated via the NF1–MAPK–FOSL1 axis. Specifically, increased invasion seems to be regulated via mutations in the leucine-rich domain (LRD) of the NF1 gene product neurofibromin. Novel targets for therapy may arise from neurofibromin deficiency-associated cellular mechanisms that are summarised in this review.


2021 ◽  
Author(s):  
Hildegard Kehrer-Sawatzki ◽  
David N. Cooper

AbstractNeurofibromatosis type 1 (NF1) is the most frequent disorder associated with multiple café-au-lait macules (CALM) which may either be present at birth or appear during the first year of life. Other NF1-associated features such as skin-fold freckling and Lisch nodules occur later during childhood whereas dermal neurofibromas are rare in young children and usually only arise during early adulthood. The NIH clinical diagnostic criteria for NF1, established in 1988, include the most common NF1-associated features. Since many of these features are age-dependent, arriving at a definitive diagnosis of NF1 by employing these criteria may not be possible in infancy if CALM are the only clinical feature evident. Indeed, approximately 46% of patients who are diagnosed with NF1 later in life do not meet the NIH diagnostic criteria by the age of 1 year. Further, the 1988 diagnostic criteria for NF1 are not specific enough to distinguish NF1 from other related disorders such as Legius syndrome. In this review, we outline the challenges faced in diagnosing NF1 in young children, and evaluate the utility of the recently revised (2021) diagnostic criteria for NF1, which include the presence of pathogenic variants in the NF1 gene and choroidal anomalies, for achieving an early and accurate diagnosis.


2021 ◽  
Author(s):  
Nida Fatima ◽  
Anna La Dine ◽  
Zachary R Barnard ◽  
Gregory P Lekovic

Abstract Segmental neurofibromatosis (SNF) is a rare subtype of neurofibromatosis (NF). The disease is characterized by features circumscribed to one or more body cutaneous and/or subcutaneous segments. This is a classic example of somatic mosaicism which occurs by postzygotic mutation of the NF1 gene late in the course of embryonic development affecting localized neural crest lines in the fetus. Our case series reported three novel patients who had segmental spinal expression of the disease classified as true mosaic/segmental NF1, along with their management plan treated at one of the largest NF1 center.


2021 ◽  
Vol 11 (12) ◽  
pp. 1320
Author(s):  
Elias K. Awad ◽  
Marc Moore ◽  
Hui Liu ◽  
Lukasz Ciszewski ◽  
Laura Lambert ◽  
...  

Neurofibromatosis type 1 (NF1) is an autosomal dominant genetic disorder with almost 3000 different disease-causing variants within the NF1 gene identified. Up to 44% of these variants cause splicing errors to occur within pre-mRNA. A recurrent variant in exon 13, c.1466A>G; p.Y489C (Y489C) results in the creation of an intragenic cryptic splice site, aberrant splicing, a 62 base pair deletion from the mRNA, and subsequent frameshift. We investigated the ability of phosphorodiamidate morpholino oligomers (PMOs) to mask this variant on the RNA level, thus restoring normal splicing. To model this variant, we have developed a human iPS cell line homozygous for the variant using CRISPR/Cas9. PMOs were designed to be 25 base pairs long, and to cover the mutation site so it could not be read by splicing machinery. Results from our in vitro testing showed restoration of normal splicing in the RNA and restoration of full length neurofibromin protein. In addition, we observe the restoration of neurofibromin functionality through GTP-Ras and pERK/ERK testing. The results from this study demonstrate the ability of a PMO to correct splicing errors in NF1 variants at the RNA level, which could open the door for splicing corrections for other variants in this and a variety of diseases.


2021 ◽  
Author(s):  
Rashmi Singh ◽  
Anup Kumar ◽  
Payal Raina ◽  
Rajanigandha Tudu ◽  
Praveer K.S. Munda

Optic nerve glioma (OPG) is a rare tumor in children and adolescents. It comprises 1–5% of central nervous system tumors. It can be sporadic or associated with the neurofibromatosis 1 (NF1) gene. These are usually slow-growing tumors and may remain localized to the optic nerve or can have encroached upon adjoining structures like optic chiasma, opposite optic nerve, and hypothalamus. So, there may be decreased or loss of vision, proptosis, focal neurological symptoms, precocious puberty, and short stature. Due to the involvement of these critical structures, its treatment should be based on multidisciplinary consensus. The treatment modalities include surgery, RT, and chemotherapy. The aim of the treatment should be to preserve vision. However, the timing and selection of optimal treatment modalities are always a clinical dilemma. Recently, there have been promising results with newer techniques of radiotherapy and chemotherapy.


Genes ◽  
2021 ◽  
Vol 12 (10) ◽  
pp. 1639
Author(s):  
Hildegard Kehrer-Sawatzki ◽  
Ute Wahlländer ◽  
David N. Cooper ◽  
Victor-Felix Mautner

Patients with neurofibromatosis type 1 (NF1) and type 1 NF1 deletions often exhibit more severe clinical manifestations than patients with intragenic NF1 gene mutations, including facial dysmorphic features, overgrowth, severe global developmental delay, severe autistic symptoms and considerably reduced cognitive abilities, all of which are detectable from a very young age. Type 1 NF1 deletions encompass 1.4 Mb and are associated with the loss of 14 protein-coding genes, including NF1 and SUZ12. Atypical NF1 deletions, which do not encompass all 14 protein-coding genes located within the type 1 NF1 deletion region, have the potential to contribute to the delineation of the genotype/phenotype relationship in patients with NF1 microdeletions. Here, we review all atypical NF1 deletions reported to date as well as the clinical phenotype observed in the patients concerned. We compare these findings with those of a newly identified atypical NF1 deletion of 698 kb which, in addition to the NF1 gene, includes five genes located centromeric to NF1. The atypical NF1 deletion in this patient does not include the SUZ12 gene but does encompass CRLF3. Comparative analysis of such atypical NF1 deletions suggests that SUZ12 hemizygosity is likely to contribute significantly to the reduced cognitive abilities, severe global developmental delay and facial dysmorphisms observed in patients with type 1 NF1 deletions.


2021 ◽  
Author(s):  
Karl Andreas Mader ◽  
Hua Lou

Neurofibromin is one of the few Ras-GTP activating proteins (Ras-GAPs) expressed in the brain. Disruption of its expression leads to the detrimental disease neurofibromatosis type 1 (NF1). Many studies have revealed the crucial role of NF1 in developing and adult tissues. However, these studies have focused on the expression of the entire NF1 gene and largely ignored the role of an alternative splicing event that controls the Ras-GAP function of neurofibromin. The focus of this chapter is NF1 exon 23a. This exon is located in the GAP-related domain (GRD) of neurofibromin. Its expression level, indicated by the percentage of its inclusion in the NF1 mRNA transcripts, has a profound effect on the Ras-GAP function of neurofibromin. In this chapter, we review the expression pattern of exon 23a and the molecular mechanisms that regulate its expression. We then discuss the role of its expression in Ras/ERK signaling and learning behaviors in mice. Lastly, we propose a few directions for future studies.


2021 ◽  
Author(s):  
Austin K Mattox ◽  
Christopher Douville ◽  
Natalie Silliman ◽  
Janine Ptak ◽  
Lisa Dobbyn ◽  
...  

Malignant peripheral nerve sheath tumors (MPNST) are the deadliest cancer that arises in individuals diagnosed with neurofibromatosis and account for nearly 5% of the 15,000 soft tissue sarcomas diagnosed in the United States each year. Comprised of neoplastic Schwann cells, primary risk factors for developing MPNST include existing plexiform neurofibromas (PN), prior radiotherapy treatment, and expansive germline mutations involving the entire NF1 gene and surrounding genes. PN develop in nearly 30-50% of patients with NF1 and most often grow rapidly in the first decade of life. One of the most important aspects of clinical care for NF1 patients is monitoring PN for signs of malignant transformation to MPNST that occurs in 10-15% of patients. We perform aneuploidy analysis on ctDNA from 883 ostensibly healthy individuals and 28 patients with neurofibromas, including 7 patients with benign neurofibroma, 9 patients with PN and 12 patients with MPNST. Overall sensitivity for detecting MPNST using genome wide aneuploidy scoring was 33%, and analysis of sub-chromosomal copy number alterations (CNAs) improved sensitivity to 50% while retaining a high specificity of 97%. In addition, we performed mutation analysis on plasma cfDNA for a subset of patients and identified mutations in NF1, NF2, RB1, TP53BP2, and GOLGA2. Given the high throughput and relatively low sequencing coverage required by our assay, liquid biopsy represents a promising technology to identify incipient MPNST.


Sign in / Sign up

Export Citation Format

Share Document