narrow width approximation
Recently Published Documents


TOTAL DOCUMENTS

23
(FIVE YEARS 8)

H-INDEX

7
(FIVE YEARS 1)

2021 ◽  
Vol 66 (11) ◽  
pp. 936
Author(s):  
V.V. Skalozub ◽  
M.S. Dmytriiev

Nowadays, no dark matter candidates have been discovered. We consider two possible reasons for that, both related to the approach of on-peak resonance searching for. As is believed usually, a new particle suits the conditions that the ratio of the width to the mass is less than 1–3% and a narrow-width approximation (NWA) is applicable to identify such type resonant peak in the invariant mass spectrum of the collision products. In the present paper, in the framework of a generalized Yukawa model, we find out the properties of the searched particle, when its width is larger than a maximal one expected during experiments, and, so, this state could be confused with a noise. We also ascertain the values of particle’s parameters, when the NWA is not applicable and estimate the width value, when it happens. These estimations are relevant to interactions between the Standard model and dark matter particles. Such approach is focused on the role of couplings and mass values introduced in the model describing the interaction of visible and dark matters.


2021 ◽  
Vol 2021 (11) ◽  
Author(s):  
Rikkert Frederix ◽  
Ioannis Tsinikos

Abstract We introduce an improvement to the FxFx matrix element merging procedure for pp →$$ t\overline{t}W $$ t t ¯ W production at NLO in QCD with one and/or two additional jets. The main modification is an improved treatment of jets that are not logarithmically enhanced in the low transverse-momentum regime. We provide predictions for the inclusive cross section and the $$ t\overline{t}W $$ t t ¯ W differential distributions including parton-shower effects. Taking also the NLO EW corrections into account, this results in the most-accurate predictions for this process to date. We further proceed to include the on-shell LO decays of the $$ t\overline{t}W $$ t t ¯ W including the tree-level spin correlations within the narrow-width approximation, focusing on the multi-lepton signatures studied at the LHC. We find a ∼30% increase over the NLO QCD prediction and large non-flat K-factors to differential distributions.


Author(s):  
Rikkert Frederix ◽  
Ioannis Tsinikos ◽  
Timea Vitos

AbstractIn this work we investigate the NLO QCD+EW corrections to the top quark pair production and their effects on the spin correlation coefficients and asymmetries at fixed-order top quark pair production and LO decay in the dilepton channel, within the narrow-width approximation. The spin correlations are implicitly measured through the lepton kinematics. Moreover we study the EW effects to the leptonic differential distributions. We find that the EW corrections to the $$t {\bar{t}}$$ t t ¯ production are within the NLO QCD theoretical uncertainties for the spin correlation coefficients and the leptonic asymmetries. On the other hand, for the differential distributions we find that the EW corrections exceed the NLO QCD scale uncertainty band in the high rapidity regimes and are of the order of the NLO QCD scale uncertainty in the case of invariant mass and transverse momentum distributions.


2021 ◽  
Vol 81 (7) ◽  
Author(s):  
Giuseppe Bevilacqua ◽  
Huan-Yu Bi ◽  
Heribertus Bayu Hartanto ◽  
Manfred Kraus ◽  
Jasmina Nasufi ◽  
...  

AbstractRecent discrepancies between theoretical predictions and experimental data in multi-lepton plus b-jets analyses for the $$t{\bar{t}}W^\pm $$ t t ¯ W ± process, as reported by the ATLAS collaboration, have indicated that more accurate theoretical predictions and high precision observables are needed to constrain numerous new physics scenarios in this channel. To this end we employ NLO QCD computations with full off-shell top quark effects included to provide theoretical predictions for the $$\mathcal{R}= \sigma _{t{\bar{t}}W^+}/\sigma _{t{\bar{t}}W^-}$$ R = σ t t ¯ W + / σ t t ¯ W - cross section ratio at the LHC with $$\sqrt{s}=13$$ s = 13 TeV. Depending on the transverse momentum cut on the b-jet we obtain 2–3% theoretical precision on $$\mathcal{R}$$ R , which should help to shed some light on new physics effects that can reveal themselves only once sufficiently precise Standard Model theoretical predictions are available. Furthermore, triggered by these discrepancies we reexamine the charge asymmetry of the top quark and its decay products in the $$t{\bar{t}}W^\pm $$ t t ¯ W ± production process. In the case of charge asymmetries, that are uniquely sensitive to the chiral nature of possible new physics in this channel, theoretical uncertainties below 15% are obtained. Additionally, the impact of the top quark decay modelling is scrutinised by explicit comparison with predictions in the narrow-width approximation.


2021 ◽  
Vol 2021 (5) ◽  
Author(s):  
Michał Czakon ◽  
Alexander Mitov ◽  
Rene Poncelet

Abstract We calculate a comprehensive set of spin correlations and differential distributions in top-quark pair production and decay to dilepton final states. Our calculation is performed in the Narrow Width Approximation. This is the first time such a complete study is performed at next-to-next-to leading order in QCD. Both inclusive and fiducial distributions are presented and analyzed. Good agreement between NNLO QCD predictions and data is found. We demonstrate that it is possible to perform high-precision comparisons of fixed-order calculations with fiducial-level data. Subtleties of the top quark definition are raised and clarified. Some of those are found to have a very significant impact on top-quark pair production at absolute threshold.


2021 ◽  
Vol 2021 (4) ◽  
Author(s):  
Mei Sen Gao ◽  
Shu Run Yuan ◽  
Jun Gao

Abstract We study the determination of the top-quark mass using leptonic observables in t-channel single top-quark production at the LHC. We demonstrate sensitivity of transverse momentum of the charged lepton on the input top-quark mass. We present predictions at next-to-next-to-leading order (NNLO) in QCD with narrow width approximation and structure function approach. Further corrections due to parton shower and hadronization, non-resonant and non-factorized contributions are discussed. To reduce impact of SM backgrounds we propose to use the charge weighted distribution for the measurement, i.e., differences between distributions of charged lepton with positive and negative charges. By modeling both signal and background processes, we found the projections for (HL-)LHC to be promising, with a total theoretical uncertainty on the extracted top-quark mass of about 1 ∼ 2 GeV.


2021 ◽  
Vol 81 (1) ◽  
Author(s):  
Zhi-Tian Zou ◽  
Lei Yang ◽  
Ying Li ◽  
Xin Liu

AbstractIn 2017, LHCb collaboration reported their first observation of the rare decays $$B_s \rightarrow \phi (f_0(980)$$ B s → ϕ ( f 0 ( 980 ) $$/f_2(1270) \rightarrow ) \pi ^+\pi ^-$$ / f 2 ( 1270 ) → ) π + π - and the evidence of $$B^0 \rightarrow \phi (f_0(980)/f_2(1270)\rightarrow )\pi ^+\pi ^-$$ B 0 → ϕ ( f 0 ( 980 ) / f 2 ( 1270 ) → ) π + π - . Motivated by this, we study these quasi-two-body decays in the perturbative QCD approach. The branching fractions, CP asymmetries and the polarization fractions are calculated. We find that within the appropriate two-meson wave functions, the calculated branching fractions are in agreement with the measurements of LHCb. Based on the narrow-width approximation, We also calculate the branching fractions of the quasi-two-body $$B_{d,s}\rightarrow \phi (f_0(980)/f_2(1270)\rightarrow ) \pi ^0\pi ^0$$ B d , s → ϕ ( f 0 ( 980 ) / f 2 ( 1270 ) → ) π 0 π 0 and $$B_{d,s}\rightarrow \phi (f_2(1270)\rightarrow ) K^+K^-$$ B d , s → ϕ ( f 2 ( 1270 ) → ) K + K - , and hope the predictions to be tested in the ongoing LHCb and Belle II experiments. Moreover, the processes $$B_{d,s}\rightarrow \phi f_2(1270)$$ B d , s → ϕ f 2 ( 1270 ) are also analyzed under the approximation. We note that the CP asymmetries of these decays are very small, because these decays are either penguin dominant or pure penguin processes.


2020 ◽  
Vol 28 (1) ◽  
pp. 3-8
Author(s):  
M. S. Dmytriiev ◽  
V. V. Skalozub

Nowadays, no dark matter candidates have been discovered. We consider the possible reason for that which is related to the approach of on-peak resonance searching for. As is believed usually, a new particle has small width and a narrow width approximation is applicable to identify such type resonant peak in the invariant mass spectrum of collision products. In the present paper, in the framework of the generalized Yukawa model, we find out the propertiesof the searched particle when its width is larger than a maximal one expected during experiments and so this state could be missed as a noise. Usually, the new particle width is considered as an arbitrary parameter. Here, we obtain the width of the dark matter particle from an imaginary part of polarization operators. Then the width is analyzed as explicit function of the couplings and masses in the underlying model of the dark matter. The corresponding constraints on the model parameters are obtained. Role of the one-loop mixing of visible and dark matter fields is investigated and constraint on the mixing angle value is derived. These estimations are quite general and, in particular, relevant to interactions between the particles of the Standard model and dark matter.


2017 ◽  
Author(s):  
Hugo Prager ◽  
Stefano Moretti ◽  
Dermot O'Brien ◽  
Luca Panizzi

Sign in / Sign up

Export Citation Format

Share Document