semiconductor compounds
Recently Published Documents


TOTAL DOCUMENTS

327
(FIVE YEARS 40)

H-INDEX

29
(FIVE YEARS 2)

2022 ◽  
pp. 275-288
Author(s):  
Akiyo Tanaka ◽  
Nikki Maples-Reynolds ◽  
Bruce A. Fowler

Author(s):  
Рустам Мухамедович Калмыков ◽  
Ахмед Мацевич Кармоков ◽  
Замир Валериевич Шомахов ◽  
Аминат Хусеновна Дышекова

В работе проведены электронно-микроскопические исследования полупроводниковых соединений на основе PbTe с примесями дисперсных фаз CdSe. Как показали результаты исследования, в исходном нелегированном соединении PbTe содержание атомов свинца составляет около 63,8 вес%, а содержание теллура составляет 36,2 вес%, т.е. соответствует стехиометрическому составу. Согласно изображениям электронного микроскопа, эти компоненты равномерно распределены по площади. Результаты исследования также показали, что образующиеся новые фазы имеют размеры зерен от 90 нм до 2 мкм. Полученные значения параметра решетки для соединения теллурида свинца и сингония хорошо согласуются с литературными данными. Структура образующихся фаз имеет такую же симметрию, как и исходное нелегированное соединение PbTe, гранецентрированную кубическую решетку с классом симметрии Fm3m. В молекулах новых образующихся фаз, в которых преобладают содержания элементов Cd и Se, обнаружено изменение сингонии кристаллической решетки. In this work, electron microscopic studies of semiconductor compounds based on PbTe with impurities of dispersed CdSe phases have been carried out. As shown by the research results, in the initial undoped PbTe compound, the content of lead atoms is about 63,8 wt.%, and the tellurium content was 36,2 wt.%, i.e. corresponded to the stoichiometric composition. According to the electron microscope images, these components are evenly distributed over the area. The results of the study also showed that the formed new phases had grain sizes from 90 nm to 2 pm. The obtained values of the lattice parameter for the lead telluride compound and crystal system are in good agreement with the literature data. The structure of the resulting phases has the same symmetry as the initial undoped PbTe compound, a face-centered cubic lattice with the Fm3m symmetry class. In the molecules of the newly formed phases, in which the abundances of the elements Cd and Se prevailed, a change in the crystal lattice syngony was found.


2021 ◽  
Vol 56 ◽  
pp. 27-38
Author(s):  
D. V. Korbutyak ◽  

Semiconductor zero-dimensional nanocrystals – quantum dots (QDs) – have been increasingly used in various fields of opto- and nanoelectronics in recent decades. This is because of the exciton nature of their luminescence, which can be controlled via the well known quantum-dimensional effect. At the same time, at small nanocrystall sizes, the influence of the surface on the optical and structural properties of nanocrystals increases significantly. The presence of broken bonds of surface atoms and point defects – vacancies and interstial atoms – can both weaken the exciton luminescence and create new effective channels of radiant luminescence. In some cases, these surface luminescence becomes dominant, leading to optical spectra broadening up to the quasi-white light. The nature of such localized states often remains unestablished due to the large number of the possible sorts of defects in both of QD and its surrounding. In contrast to exciton luminescence, which can be properly described within effective-mass approximations, the optical properties of defects relay on chemical nature of both defect itsself and its surrounding, what cannot be provided by “hydrogen-type coulomb defect” approximation. Moreover, charge state and related to this lattice relaxation must be taken into account, what requires an application of atomistic approach, such as Density functioal theory (DFT). Therefore, this review is devoted to the study of surface (defect) states and related luminescence, as well as the analysis of possible defects in nanocrystals of semiconductor compounds A2B6 (CdS, CdZnS, ZnS), responsible for luminescence processes, within ab initio approach. The review presents the results of the authors' and literature sources devoted to the study of the luminescent characteristics of ultra-small (<2 nm) QDs.


2021 ◽  
pp. 1-9
Author(s):  
Julie Stene Nilsen ◽  
Antonius T. J. van Helvoort

A practical method to determine the composition within ternary heterostructured semiconductor compounds using energy-dispersive X-ray spectroscopy in scanning transmission electron microscopy is presented. The method requires minimal external input factors such as user-determined or calculated sensitivity factors by incorporating a known compositional relationship, here a fixed stoichiometric ratio in III–V compound semiconductors. The method is demonstrated for three different systems; AlGaAs/GaAs, GaAsSb/GaAs, and InGaN/GaN with three different specimen geometries and compared to conventional quantification approaches. The method incorporates absorption effects influencing the composition analysis without the need to know the thickness of the specimen. Large variations in absorption conditions and assumptions regarding the reference area limit the accuracy of the developed method.


2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
A. S. Saidov ◽  
D. V. Saparov ◽  
Sh.N. Usmonov ◽  
A. Kutlimratov ◽  
J.M. Abdiev ◽  
...  

Epitaxial layers of the solid solution of molecular substitution (Si2)1-x(GaP)x (0 ≤ x ≤ 1) on Si (111) and GaP (111) substrates are grown by liquid-phase epitaxy from an Sn solution-melt. Such graded-gap solid solutions allow the integration of well-established silicon technology with the advantages of III-V semiconductor compounds. The structural features, the distribution of the atoms of the components over the thickness of the epitaxial layer, the photoluminescence spectrum of the (Si2)1-x(GaP)x (0 ≤ x ≤ 1) solid solution, and the electroluminescence of the structure n-GaP-n+-(Si2)x (GaP)1-x (0 ≤ x ≤ 0.01) have been investigated. It is shown that the layers of the solid solution have a perfect single-crystal structure with the crystallographic orientation (111), with the size of subcrystallites ∼ 39 ± 1 nm. The epitaxial layer (Si2)1-x(GaP)x (0 ≤ x ≤ 1) is a graded-gap layer with a smoothly and monotonically varying composition from silicon to 100% GaP. The energy levels of atoms of Si2 molecules which are located 1.47 eV below the bottom of the conduction band of gallium phosphide are revealed. Red emission of n-GaP-n+-(Si2)x(GaP)1-x (0 ≤ x ≤ 0.01) structure which is caused by electron transitions with participation of energy levels of Si2 atoms is detected.


Nanomaterials ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 2692
Author(s):  
Jawad El Hamdaou ◽  
Mohamed El-Yadri ◽  
Mohamed Farkous ◽  
Mohamed Kria ◽  
Maykel Courel ◽  
...  

Following the chronological stages of calculations imposed by the WIEN2K code, we have performed a series of density functional theory calculations, from which we were able to study the effect of strain on the kesterite structures for two quaternary semiconductor compounds Cu2ZnGeS4 and Cu2ZnGeSe4. Remarkable changes were found in the electronic and optical properties of these two materials during the application of biaxial strain. Indeed, the band gap energy of both materials decreases from the equilibrium state, and the applied strain is more pronounced. The main optical features are also related to the applied strain. Notably, we found that the energies of the peaks present in the dielectric function spectra are slightly shifted towards low energies with strain, leading to significant refraction and extinction index responses. The obtained results can be used to reinforce the candidature of Cu2ZnGeX4(X = S, Se) in the field of photovoltaic devices.


2021 ◽  
Vol 85 (9) ◽  
pp. 1026-1028
Author(s):  
Yu. P. Zarichnyak ◽  
V. A. Ivanov ◽  
N. V. Pilipenko ◽  
A. E. Ramazanova ◽  
S. N. Emirov

2021 ◽  
Vol 7 (2) ◽  
pp. 73-78
Author(s):  
Roman Yu. Kozlov ◽  
Svetlana S. Kormilitsina ◽  
Elena V. Molodtsova ◽  
Eugene O. Zhuravlev

Currently there is a worldwide trend to increase the diameter of crystals grown from elemental semiconductors and semiconductor compounds. According to literary data the diameter of 3–5 semiconductor single crystals grown nowadays is 4 to 6 inches. So far up to 75 mm indium antimonide single crystals have been grown in Russia. Indium antimonide is the element base for the widest field of solid state electronics, i.e., optoelectronics. Indium antimonide is used for the fabrication of 3–5 mm range linear photodetectors and photodetector arrays used as light-sensitive material in heat vision systems. Growth heat conditions have been selected and 100 mm [100] indium antimonide single crystals have been grown using the modified two-stage Czochralski technique. The graphite heating unit has been oversized to accommodate a 150 mm crucible and a 4.5–5 kg load. The results of the work have provided for a substantial increase in the yield of photodetectors. The electrophysical properties of the as-grown single crystals have been studied using the Van der Pau method and proved to be in agreement with the standard parameters of undoped indium antimonide. Using the 9-field etch method of pit counting under an optical microscope the dislocation density in the 100 mm single crystals has been measured to be ≤ 100 cm-2which is similar to that for 50 mm single crystals.


Sign in / Sign up

Export Citation Format

Share Document