late step
Recently Published Documents


TOTAL DOCUMENTS

139
(FIVE YEARS 10)

H-INDEX

48
(FIVE YEARS 0)

2021 ◽  
Vol 12 ◽  
Author(s):  
Fumihiro Kato ◽  
Yuichiro Nakatsu ◽  
Keiko Murano ◽  
Aika Wakata ◽  
Toru Kubota ◽  
...  

Many efforts have been dedicated to the discovery of antiviral drug candidates against the mumps virus (MuV); however, no specific drug has yet been approved. The development of efficient screening methods is a key factor for the discovery of antiviral candidates. In this study, we evaluated a screening method using an Aequorea coerulescens green fluorescent protein-expressing MuV infectious molecular clone. The application of this system to screen for active compounds against MuV replication revealed that CD437, a retinoid acid receptor agonist, has anti-MuV activity. The point of antiviral action was a late step(s) in the MuV life cycle. The replication of other paramyxoviruses was also inhibited by CD437. The induction of retinoic acid-inducible gene (RIG)-I expression is a reported mechanism for the antiviral activity of retinoids, but our results indicated that CD437 did not stimulate RIG-I expression. Indeed, we observed antiviral activity despite the absence of RIG-I, suggesting that CD437 antiviral activity does not require RIG-I induction.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
David Ranava ◽  
Yiying Yang ◽  
Luis Orenday-Tapia ◽  
François Rousset ◽  
Catherine Turlan ◽  
...  

In Proteobacteria, integral outer membrane proteins (OMPs) are crucial for the maintenance of the envelope permeability barrier to some antibiotics and detergents. In Enterobacteria, envelope stress caused by unfolded OMPs activates the sigmaE (σE) transcriptional response. σE upregulates OMP biogenesis factors, including the β-barrel assembly machinery (BAM) that catalyses OMP folding. Here we report that DolP (formerly YraP), a σE-upregulated and poorly understood outer membrane lipoprotein, is crucial for fitness in cells that undergo envelope stress. We demonstrate that DolP interacts with the BAM complex by associating with outer membrane-assembled BamA. We provide evidence that DolP is important for proper folding of BamA that overaccumulates in the outer membrane, thus supporting OMP biogenesis and envelope integrity. Notably, mid-cell recruitment of DolP had been linked to regulation of septal peptidoglycan remodelling by an unknown mechanism. We now reveal that, during envelope stress, DolP loses its association with the mid-cell, thereby suggesting a mechanistic link between envelope stress caused by impaired OMP biogenesis and the regulation of a late step of cell division.


eLife ◽  
2020 ◽  
Vol 9 ◽  
Author(s):  
Ryoji Miyazaki ◽  
Yoshinori Akiyama ◽  
Hiroyuki Mori

Bacterial cells utilize monitoring substrates, which undergo force-sensitive translation elongation arrest, to feedback-regulate a Sec-related gene. Vibrio alginolyticus VemP controls the expression of SecD/F that stimulates a late step of translocation by undergoing export-regulated elongation arrest. Here, we attempted at delineating the pathway of the VemP nascent-chain interaction with Sec-related factors, and identified the signal recognition particle (SRP) and PpiD (a membrane-anchored periplasmic chaperone) in addition to other translocon components and a ribosomal protein as interacting partners. Our results showed that SRP is required for the membrane-targeting of VemP, whereas PpiD acts cooperatively with SecD/F in the translocation and arrest-cancelation of VemP. We also identified the conserved Arg-85 residue of VemP as a crucial element that confers PpiD-dependence to VemP and plays an essential role in the regulated arrest-cancelation. We propose a scheme of the arrest-cancelation processes of VemP, which likely monitors late steps in the protein translocation pathway.


2020 ◽  
Author(s):  
David Ranava ◽  
Yiying Yang ◽  
Luis Orenday-Tapia ◽  
François Rousset ◽  
Catherine Turlan ◽  
...  

AbstractIn Gram-negative bacteria, coordinated remodelling of the outer membrane (OM) and the peptidoglycan is crucial for envelope integrity. Envelope stress caused by unfolded OM proteins (OMPs) activates sigmaE (σE) in Enterobacteria. σE upregulates OMP biogenesis factors, including the β-barrel assembly machinery (BAM) that catalyzes OMP-folding. Elevated σE activity, however, can be detrimental for OM integrity. Here we report that DolP (YraP), a σE-upregulated OM lipoprotein important for envelope integrity, is a novel interactor of BAM and we demonstrate that OM-assembled BamA is a critical determinant of the BAM-DolP complex. Mid-cell recruitment of DolP had been previously associated to activation of septal peptidoglycan remodelling during cell division, but its role during envelope stress was unknown. We now show that DolP promotes cell fitness upon stress-induced activation of σE and opposes a detrimental effect caused by the overaccumulation of BAM in the OM. During envelope stress, DolP loses its association with the mid-cell, thus suggesting a possible link between envelope stress caused by impaired OMP biogenesis and the regulation of a late step of cell division.


2020 ◽  
Author(s):  
Ryoji Miyazaki ◽  
Yoshinori Akiyama ◽  
Hiroyuki Mori

AbstractBacterial cells utilize monitoring substrates, which undergo force-sensitive translation elongation arrest, to feedback-regulate a Sec-related gene. Vibrio alginolyticus VemP controls the expression of SecD/F that stimulates a late step of translocation by undergoing export-regulated elongation arrest. Here, we attempted at delineating the pathway of the VemP nascent-chain interaction with Sec-related factors, and identified the signal recognition particle (SRP) and PpiD (a membrane-anchored periplasmic chaperone) in addition to other translocon components and a ribosomal protein as interacting partners. Our results showed that SRP is required for the membrane-targeting of VemP, whereas PpiD acts cooperatively with SecD/F in the VemP arrest-cancelation. We also identified the conserved Arg-85 residue in VemP as an essential element for the regulated arrest-cancelation of VemP. We propose a scheme of the arrest-cancelation processes of VemP, which likely monitors late steps in the protein translocation pathway.


2020 ◽  
Vol 24 (5) ◽  
pp. 282-288
Author(s):  
Jinsun Kim ◽  
Cha-Gyun Shin

mBio ◽  
2020 ◽  
Vol 11 (3) ◽  
Author(s):  
Judy J. Wan ◽  
Rebecca S. Brown ◽  
Margaret Kielian

ABSTRACT Alphaviruses are enveloped positive-sense RNA viruses that can cause serious human illnesses such as polyarthritis and encephalitis. Despite their widespread distribution and medical importance, there are no licensed vaccines or antivirals to combat alphavirus infections. Berberine chloride (BBC) is a pan-alphavirus inhibitor that was previously identified in a replicon-based small-molecule screen. This work showed that BBC inhibits alphavirus replication but also suggested that BBC might have additional effects later in the viral life cycle. Here, we show that BBC has late effects that target the virus nucleocapsid (NC) core. Infected cells treated with BBC late in infection were unable to form stable cytoplasmic NCs or assembly intermediates, as assayed by gradient sedimentation. In vitro studies with recombinant capsid protein (Cp) and purified genomic RNA (gRNA) showed that BBC perturbs core-like particle formation and potentially traps the assembly process in intermediate states. Particles produced from BBC-treated cells were less infectious, despite efficient particle production and only minor decreases in genome packaging. In addition, BBC treatment of free virus particles strongly decreased alphavirus infectivity. In contrast, the infectivity of the negative-sense RNA virus vesicular stomatitis virus was resistant to BBC treatment of infected cells or free virus. Together, our data indicate that BBC alters alphavirus Cp-gRNA interactions and oligomerization and suggest that this may cause defects in NC assembly and in disassembly during subsequent virus entry. Thus, BBC may be considered a novel alphavirus NC assembly inhibitor. IMPORTANCE The alphavirus chikungunya virus (CHIKV) is an example of an emerging human pathogen with increased and rapid global spread. Although an acute CHIKV infection is rarely fatal, many patients suffer from debilitating chronic arthralgia for years. Antivirals against chikungunya and other alphaviruses have been identified in vitro, but to date none have been shown to be efficacious and have been licensed for human use. Here, we investigated a small molecule, berberine chloride (BBC), and showed that it inhibited infectious virus production by several alphaviruses including CHIKV. BBC acted on a late step in the alphavirus exit pathway, namely the formation of the nucleocapsid containing the infectious viral RNA. Better understanding of nucleocapsid formation and its inhibition by BBC will provide important information on the mechanisms of infectious alphavirus production and may enable their future targeting in antiviral strategies.


2020 ◽  
Author(s):  
Lamisse MANSOUR-HENDILI ◽  
Abdelrazak Aissat ◽  
Bouchra Badaoui ◽  
Mehdi Sakka ◽  
Christine Gameiro ◽  
...  

Abstract Background: Congenital hemolytic anemia constitutes a heterogeneous group of rare genetic disorders of red blood cells. Diagnosis is based on clinical data, family history and phenotypic testing, genetic analyses being usually performed as a late step. In this study, we explored 40 patients with congenital hemolytic anemia by whole exome sequencing: 20 patients with hereditary spherocytosis and 20 patients with unexplained hemolysis. Results: A probable genetic cause of disease was identified in 82.5% of the patients (33/40): 100% of those with suspected hereditary spherocytosis (20/20) and 65% of those with unexplained hemolysis (13/20). We found that several patients carried genetic variations in more than one gene (3/20 in the hereditary spherocytosis group, 6/13 fully elucidated patients in the unexplained hemolysis group), giving a more accurate picture of the genetic complexity of congenital hemolytic anemia. In addition, whole exome sequencing allowed us to identify genetic variants in non-congenital hemolytic anemia genes that explained part of the phenotype in 3 patients. Conclusion: The rapid development of next generation sequencing has rendered the genetic study of these diseases much easier and cheaper. Whole exome sequencing in congenital hemolytic anemia could provide a more precise and quicker diagnosis, improve patients’ healthcare and probably has to be democratized notably for complex cases. .


2020 ◽  
Author(s):  
Geoffrey Aertgeerts ◽  
Didier Lahondère ◽  
Antoine Triantafyllou ◽  
Jean-Pierre Lorand ◽  
Christophe Monnier ◽  
...  

<p>In this study, two types of natural asbestos-like actinolite occurrences were sampled in order to understand their tectonic and metamorphic signification. Studied rocks were collected within two Variscan ophiolitic formations (Tréogat and Pont de Barel Formations, South Armorican Massif, Western France), mainly composed of amphibolites, and which recorded amphibolite to greenschist facies metamorphism. In these localities, the natural asbestos-like actinolite occurrences are closely related with the development of tectonic structures such as extension veins, tension gashes, σ and δ-type boudins. Field and petrostructural studies together with optical microscope, SEM and electron-microprobe analyses (EPMA) allowed to link early steps of the retrograde deformation event, during which acicular hornblende crystallizes in extension veins showing fuzzy boundaries or in hosting rock, with the late step of the same deformation event, during which hornblende is downgraded into asbestos-like actinolite synchronous with felsic melt circulation and tectonic structures opening. Field and microtectonic observations point to a sinistral strike-slip shearing for Pont de Barel formation and to a sinistral transtensive shearing for the Tréogat formation, which is consistent with the late regional variscan exhumation of the South Armorican Terrane.  SEM observations show that asbestos-like actinolite originate from hornblende crystallographic plan fragmentation, starting first along the (110) plans and continue both along the (100) and (110) plans. EPMA analyses show that Na-Al-Si metasomatism is associated with this fragmentation. Temperature estimates of chlorite crystallization after hornblende are around 300°C for the Tréogat Formation and 200°C for the Pont de Barel Formation, suggesting that amphibole fragmentation can occur over a wide temperature range. Additionally, Principal Component Analysis was performed using crystallographic sites distribution. Results show a clear correlation between actinolite Si(T) and hornblende Al(T), Al(C) and Na(A) crystallographic sites, suggesting that asbestos-like actinolite after hornblende fragmentation is rather due to a decrease of pressure within the tectonic structures, as Al in amphibole is pressure-dependent. This decrease could be due to the fluid pressure, which is supra-lithostatic during tectonic structures opening.</p>


2020 ◽  
Author(s):  
Lamisse Mansour-Hendili ◽  
Abdelrazak Aissat ◽  
Bouchra Badaoui ◽  
Mehdi Sakka ◽  
Christine Gameiro ◽  
...  

Abstract Background: Congenital hemolytic anemia constitutes a heterogeneous group of rare genetic disorders of red blood cells. Diagnosis is based on clinical data, family history and phenotypic testing, genetic analyses being usually performed as a late step. In this study, we explored 40 patients with congenital hemolytic anemia by whole exome sequencing: 20 patients with hereditary spherocytosis and 20 patients with unexplained hemolysis.Results: A probable genetic cause of disease was identified in 82.5% of the patients (33/40): 100% of those with suspected hereditary spherocytosis (20/20) and 65% of those with unexplained hemolysis (13/20). We found that several patients carried genetic variations in more than one gene (3/20 in the hereditary spherocytosis group, 6/13 fully elucidated patients in the unexplained hemolysis group), giving a more accurate picture of the genetic complexity of congenital hemolytic anemia. In addition, whole exome sequencing allowed us to identify genetic variants in non-congenital hemolytic anemia genes that explained part of the phenotype in 3 patients.Conclusion: The rapid development of next generation sequencing has rendered the genetic study of these diseases much easier and cheaper. Whole exome sequencing use for congenital hemolytic anemia could provide a more precise and quicker diagnosis, improve patients’ healthcare and probably has to be democratized notably for complex cases.


Sign in / Sign up

Export Citation Format

Share Document