viscous mass
Recently Published Documents


TOTAL DOCUMENTS

48
(FIVE YEARS 12)

H-INDEX

7
(FIVE YEARS 1)

Author(s):  
Zhipeng Zhao ◽  
Qingjun Chen ◽  
Ruifu Zhang ◽  
Xiaosong Ren ◽  
Xiuyan Hu

2021 ◽  
Vol 240 ◽  
pp. 112307
Author(s):  
Xiaodong Ji ◽  
Junshan Zhang ◽  
Kohju Ikago ◽  
Sanjukta Chakraborty ◽  
Hideto Kanno

Vibration ◽  
2021 ◽  
Vol 4 (1) ◽  
pp. 77-90
Author(s):  
Sebastian Rieß ◽  
William Kaal ◽  
Kristian Herath

A frequency-adaptable tuned mass damper (FATMD) using metal cushions as tuneable stiffness components is presented. The dynamic properties of the cushions with respect to stiffness and damping are investigated experimentally in this context. The natural frequency of the experimental FATMD is found to be dependent on the precompression of the metal cushions, which behave like nonlinear springs, yielding an adjustable frequency range from 67 to 826 Hz. As the precompression is increased, the stiffness increases while the damping characteristics decrease, the effect of which was quantified using a viscous mass damper model as a first approximation. Measurements have been carried out under five different excitation amplitudes to investigate the amplitude dependency of the resonance frequency. The FATMD was largely unaffected by changes in input amplitude. It was concluded that metal cushions show great potential for use in FATMDs, surpassing the utility of elastomers, especially with respect to their temperature stability.


2020 ◽  
Vol 225 ◽  
pp. 111252
Author(s):  
Xiaodong Ji ◽  
Yuhao Cheng ◽  
Carlos Molina Hutt

Microbiology ◽  
2020 ◽  
Vol 166 (8) ◽  
pp. 707-716 ◽  
Author(s):  
Anna Koza ◽  
Robyn Jerdan ◽  
Scott Cameron ◽  
Andrew J. Spiers

Model bacterial biofilm systems suggest that bacteria produce one type of biofilm, which is then modified by environmental and physiological factors, although the diversification of developing populations might result in the appearance of adaptive mutants producing altered structures with improved fitness advantage. Here we compare the air–liquid (A–L) interface viscous mass (VM) biofilm produced by Pseudomonas fluorescens SBW25 and the wrinkly spreader (WS) and complementary biofilm-forming strain (CBFS) biofilm types produced by adaptive SBW25 mutants in order to better understand the link between these physical structures and the fitness advantage they provide in experimental microcosms. WS, CBFS and VM biofilms can be differentiated by strength, attachment levels and rheology, as well as by strain characteristics associated with biofilm formation. Competitive fitness assays demonstrate that they provide similar advantages under static growth conditions but respond differently to increasing levels of physical disturbance. Pairwise competitions between biofilms suggest that these strains must be competing for at least two growth-limiting resources at the A–L interface, most probably O2 and nutrients, although VM and CBFS cells located lower down in the liquid column might provide an additional fitness advantage through the colonization of a less competitive zone below the biofilm. Our comparison of different SBW25 biofilm types illustrates more generally how varied biofilm characteristics and fitness advantage could become among adaptive mutants arising from an ancestral biofilm–forming strain and raises the question of how significant these changes might be in a range of medical, biotechnological and industrial contexts where diversification and change may be problematic.


2020 ◽  
Vol 10 (9) ◽  
pp. 2999
Author(s):  
Qingjun Chen ◽  
Yanchao Wang ◽  
Zhipeng Zhao

As a classic inerter system, the tuned viscous mass damper (TVMD) has been proven to be efficient for vibration control. It is characterized by an amplification effect, where the deformation of the dashpot in the TVMD can be larger than that of a single dashpot, providing enhanced energy dissipation. However, the contribution of this system to the enhancement of the energy dissipation quantity and vibration control remains unclear. To deal with this, and considering the underlying soil, this study proposes a systematic energy spectrum analysis framework for the single-degree-of-freedom (SDOF) element controlled by a tuned viscous mass damper (TVMD) in order to reveal the energy characteristics of the TVMD and develop an optimal energy dissipation enhancement-based design. The proposed energy spectrum analysis includes ground motion propagation and energy balance analysis. Considering the underlying soil, energy balance analysis is performed for a series of SDOF elements connected to the TVMD, which yields a fitted input energy spectrum for optimal design of the TVMD. Extensive parametric analysis reveals energy characteristics of the TVMD compared with a single dashpot, yielding an optimal energy dissipation enhancement-based design. The findings of this study show that by considering the soil underneath the inerter-based structure, the developed energy spectrum analysis quantifies the degree of energy dissipation enhancement effect of the TVMD. The proposed design is effective in guaranteeing the target of displacement control, which optimizes the efficiency and quantity of the TVMD for energy dissipation, relieving the energy-dissipation burden on the primary element.


Sign in / Sign up

Export Citation Format

Share Document