cutting zone
Recently Published Documents


TOTAL DOCUMENTS

354
(FIVE YEARS 121)

H-INDEX

17
(FIVE YEARS 4)

Materials ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 585
Author(s):  
Marcel Kuruc ◽  
Tomáš Vopát ◽  
Jozef Peterka ◽  
Martin Necpal ◽  
Vladimír Šimna ◽  
...  

The paper deals with the issue of cutting zone and chip compression. The aim was to analyse the microstructure transverse section of the cutting zone on a metallographic cut, due to determined values of chip compression and plastic deformation, which affect the cutting process efficiency. The tested cutting tool material was coated with cemented carbide. The selected workpiece materials were C45 medium carbon steel of ISO grade and 62SiMnCr4 tool steel of ISO (W.Nr. 1.2101) grade. In the experiments, a DMG CTX alpha 500 turning centre was used. The cutting speed and feed were varied, and the depth of the cut was kept constant during the turning. The plastic deformation and chip compression determine the efficiency of the cutting process. The higher compression requires more work to perform the process and, therefore, it requires more energy for doing so. With the increase of the cutting speed, the deformation for C45 steel is decreased. The rapid deformation reduction was observed when the cutting speed was increased from 145 m/min to 180 m/min. Generally, deformation is decreasing with the increase of the feed. Only at a cutting speed of 145 m/min was the deformation elevation observed, when the feed was increased from 0.4 mm to 0.6 mm. During the turning of the 62SiMnCr4 tool steel we observed an error value at a cutting speed of 145 m/min and a feed of 0.4 mm was the middle cutting parameter. However, feed dependence was clear: With an increase of the feed, the plastic deformation was decreasing. This decreasing was more rapid with the increasing of the cutting speed. Besides plastic deformation, there was analysed chip compression as well. With the increasing of the cutting speed, there was a decrease of the chip compression. Due to a lack of information in the area of the chip compression and the plastic deformation in the cutting process, we decided to investigate the cutting zone for the turning of tool steels 62SiMnCr4, which was compared with the reference steel C45. The results could be applied to increase the efficiency of the process and improvement of the surface integrity.


2022 ◽  
Author(s):  
A. Khramov

Abstract. Studies have been carried out to assess the effectiveness of dry processing by the current preparations from the heat-resistant alloy CN45MVTUBR with mineral ceramic incisors with the introduction of the ultrasound-field energy treatment zone. It has been established that the use of ULTRASOUND in the rough treatment of mineral ceramic tools without coolant allows to reduce the depth of the defective layer in 1.5 times.


2021 ◽  
Vol 23 (4) ◽  
pp. 79-92
Author(s):  
Igor Efimovich ◽  
◽  
Ivan Zolotukhin ◽  

Introduction. The efficiency of the metalworking processes highly depends on the performance of the implemented cutting tools that can be increased by studying its stress-strain state and temperature fields. Existing stress analysis methods either have a low accuracy or are inapplicable for research during the operation of the tools made of materials with high mechanical properties. In addition, the study of temperature fields using known methods is difficult due to the small size of the cutting zone, high temperatures, and a heavy temperature gradient appearing during metal cutting. The purpose of this study is to develop new experimental methods for measuring the stress-strain and temperature fields in the cutting tool during its operation using laser interferometry. The methods include: obtaining interference fringe patterns using an interferometer with the original design, obtaining the tool deformation field during the cutting process by recording the changes in interference fringe patterns using a high-speed camera, processing fringe patterns with the separation of deformations caused by heating and cutting forces, and calculating temperature fields and stress distributions using mechanical properties and the coefficient of thermal expansion of the tool material. The advantages of the developed methods include: applicability under real operating conditions of the cutting tool, ability to study the non-stationary stress-strain state and temperatures during an operation, and achievement of a high spatial resolution and a small field of view for the investigated surface. Results and Discussion. The experimental study confirmed the efficiency of the methods. The results of the study included the fields of stresses and temperatures obtained during the orthogonal cutting of heat-resistant steel with a tool made of cemented tungsten carbide WC-8Co. The developed methods can be used to study the cutting tool efficiency at close to real conditions and in obtaining boundary conditions for the study stress-strain state of a workpiece material near the cutting zone.


2021 ◽  
Vol 5 (2) ◽  
Author(s):  
Alla Fesenko ◽  
Fatyma Yevsiukova ◽  
Olena Naboka

An instrumental module for external circular grinding has been developed, using methods of intermittent processing with replaceable abrasive bars with a combined supply of coolant through the pores of the bars and through the channels between them, with its activation in special cavitation nozzles. Is to develop a method for circular external inter-mittent grinding and a tool module that ensures stable operation of the wheel and efficient supply of cutting fluid to the cutting zone. The tool module of the assembling grinding wheel has been developed, which provides the effect of intermittent grinding with the supply of cutting fluid through the abrasive bars and the gap between them.


2021 ◽  
Vol 2131 (4) ◽  
pp. 042016
Author(s):  
Yu Astsaturov ◽  
S Solovyov ◽  
V Zhigulsky

Abstract The article discusses methods of controlling the processes of mechanical processing based on electrochemical effects. The corresponding anodic polarization curves of 1X18H9T steel obtained in electrolyte solutions without and with stirring are presented. The article discusses methods of machining processes control based on electrochemical effects. Lubricating and cooling technological media (LCTM) used in machining are in most cases electrolytes, therefore, electrochemical processes and phenomena actively occur during contact dynamic machining. It is possible to control the processes of machining by acting on the system elements of the tool - LCTM- part, in particular by activating the LCTM and reducing the strength characteristics of the processed steel in the cutting zone. A reserve for increasing the efficiency of mechanical processing can be the composition selection of the applied LCTM, combined with the simultaneous electrochemical polarization of the treated surface of friction pair parts. It was found that when cutting, the efficiency of machining and the chip shapes are changed, which is explained by the influence of the current density on the strength of the processed steel. In the conditions of machining, complex dynamic processes occur due to the rotation of the work piece and/or tool, so it is necessary to take into account the hydrodynamic phenomena and processes that arise in this case. Electrode potentials are considered to be the most important characteristic of the metal cutting process. The potential of the system can regulate such processes and indicators as wear and surface micro hardness. Anodic polarization curves of the steel 1X18H9T obtained in various electrolyte solutions without stirring and with stirring on a rotating disk electrode are given. The study allowed determining the factors affecting the processes occurring in the cutting zone and to identify rational current densities due to simulating the conditions of real technological processes of the combined steel processing. The increase in the processing intensity of the steel 1X18H9T with the cutting zone polarization is associated with the action of factors activating the selective anodic dissolution of the processed alloy.


2021 ◽  
Vol 2131 (2) ◽  
pp. 022014
Author(s):  
D Gladckih ◽  
S Studennikova

Abstract The subject of the research is a control system of coolant supply. The results of system simulation in MathLab application program package for solving problems of technical calculations are presented and the analysis of transients is carried out. Reliability and productivity of a machine tool module depends on the quality of coolant supply control. This problem is actual for CNC machines, used for drilling holes with hard-alloy drills. of cutting fluid through the cutting zone depends on the state of chips in the drill hole channels. In the article the simulation of pump control as a function of changing flow rate is performed. The conclusion of the conducted research is the proposed model of the system of supply and flow of lubrication-cooling fluid, which allows analyzing the performance of the object under study.


2021 ◽  
Author(s):  
Maël Jeulin ◽  
Olivier Cahuc ◽  
Philippe Darnis ◽  
Raynald Laheurte

Abstract Most of the cutting models developed in the literature attest only to the presence of cutting forces in the balance of mechanical actions resulting from cutting. However, several studies have highlighted the presence of cutting moments during machining, and particularly 3D cutting in milling. The objective of this paper is to characterise phenomena associated with cutting moments by performing experimental mechanistic modelling in 3D cutting. For this purpose, several modelling factors will be investigated, such as the 3D cutting reference frame, the undeformed chip section, the cutting parameters, the cutting zone, etc. The predictive model of this study proves to be relatively efficient for an experimental model and allows a global prediction of cutting moments in milling. Furthermore, beyond the aspect of stress fields in the workpiece caused by cutting moments, this paper gives perspectives from an energetic point of view for which the share of moments in the energy balance could be substantial for monobloc tools.


Author(s):  
Slavica Prvulovic ◽  
Predrag Mosorinski ◽  
Dragica Radosav ◽  
Jasna Tolmac ◽  
Milica Josimovic ◽  
...  

BioResources ◽  
2021 ◽  
Vol 16 (4) ◽  
pp. 6993-7005
Author(s):  
Feng Zhang ◽  
Zhanwen Wu ◽  
Yong Hu ◽  
Zhaolong Zhu ◽  
Xiaolei Guo

In the milling of wood-plastic composites, the cutting temperature has a great influence on tool life and cutting quality. The effects of cutting parameters on the cutting temperatures in the cutting zone were analyzed using infrared temperature measurement technology. The results indicated that the cutting temperature increased with the increase of spindle speed and cutting depth but decreased with the increase of feed rates. In addition, based on experimental data, a BP neural network model was proposed for predicting the cutting temperatures. The value of R2 was 0.97354 for the testing data, which indicates that the developed model achieved high prediction accuracy, respectively. The results of the study can play a guiding role in the prediction and control of cutting temperature, which is of great importance in the improvement of tool life, machining quality, and machining efficiency.


Sign in / Sign up

Export Citation Format

Share Document