caudate nucleus
Recently Published Documents


TOTAL DOCUMENTS

1685
(FIVE YEARS 122)

H-INDEX

104
(FIVE YEARS 3)

2022 ◽  
pp. 1-4
Author(s):  
Matthew Beth Urhoy ◽  
William J. House

A 38-year-old right-handed female with a past history of intermittent painful rash, dizzy spells, and chronic daily headaches as well as episodic migraines experienced an episode of transient involuntary pathological laughter, right arm weakness, and expressive dysphasia. She was found on MRI to have multiple strokes in multiple vascular distributions, including one in the head of the left caudate. A cardiac ECHO found an atrial myxoma, with extensive evaluation for other causes of stroke unrevealing. The differential diagnosis for pathological laughter in this patient is discussed. The most plausible cause in this patient is an infarct to the head of the left caudate nucleus caused by an embolus of the atrial myxoma.


BMC Neurology ◽  
2022 ◽  
Vol 22 (1) ◽  
Author(s):  
Nigul Ilves ◽  
Silva Lõo ◽  
Norman Ilves ◽  
Rael Laugesaar ◽  
Dagmar Loorits ◽  
...  

Abstract Background Perinatal stroke (PS) is the leading cause of hemiparetic cerebral palsy (CP). Involvement of the corticospinal tract on neonatal magnetic resonance imaging (MRI) is predictive of motor outcome in patients with hemiparetic CP. However, early MRI is not available in patients with delayed presentation of PS and prediction of hemiparesis severity remains a challenge. Aims To evaluate the volumes of the basal ganglia, amygdala, thalamus, and hippocampus following perinatal ischemic stroke in relation to hand motor function in children with a history of PS and to compare the volumes of subcortical structures in children with PS and in healthy controls. Methods Term born PS children with arterial ischemic stroke (AIS) (n = 16) and with periventricular venous infarction (PVI) (n = 18) were recruited from the Estonian Pediatric Stroke Database. MRI was accuired during childhood (4-18 years) and the volumes of the basal ganglia, thalamus, amygdala and hippocampus were calculated. The results of stroke patients were compared to the results of 42 age- and sex-matched healthy controls. Affected hand function was evaluated by Assisting Hand Assessment (AHA) and classified by the Manual Ability Classification System (MACS). Results Compared to the control group, children with AIS had smaller volumes of the ipsi- and contralesional thalami, ipsilesional globus pallidus, nucleus accumbens and hippocampus (p < 0.005). Affected hand function in children with AIS was correlated with smaller ipsilesional thalamus, putamen, globus pallidus, hippocampus, amygdala and contralesional amygdala (r > 0.5; p < 0.05) and larger volume of the contralesional putamen and hippocampus (r < − 0.5; p < 0.05). In children with PVI, size of the ipsilesional caudate nucleus, globus pallidus, thalamus (p ≤ 0.001) and hippocampus (p < 0.03) was smaller compared to controls. Smaller volume of the ipsi- and contralesional thalami and ipsilesional caudate nucleus was correlated with affected hand function (r > 0.55; p < 0.05) in children with PVI. Conclusions Smaller volume of ipsilesional thalamus was associated with poor affected hand function regardless of the perinatal stroke subtype. The pattern of correlation between hand function and volume differences in the other subcortical structures varied between children with PVI and AIS. Evaluation of subcortical structures is important in predicting motor outcome following perinatal stroke.


2022 ◽  
Vol 26 (6) ◽  
pp. 4-15
Author(s):  
A. A. Smirnova ◽  
L. N. Prakhova ◽  
A. G. Ilves ◽  
N. A. Seliverstova ◽  
T. N. Reznikova ◽  
...  

Abstract. Despite a high prevalence of mild cognitive impairment (MCI), there are no accepted algorithms of diff erentiating the syndrome and the prognosis evaluation of later cognitive decline at this time. Objective. To identify biomarkers of poor prognosis in the various MCI types by optimizing neuropsychological examination in combination with MRI morphometry of brain structures. Patients and methods. We examined 45 patients (9 men, 36 women, mean age 72 ± 6.7 years) with MCI according to the modifi ed Petersen’s criteria and the DSM-5 criteria. All patients underwent the MMSE scale, the Detailed Neuropsychological Testing (DNT), which included a Ten Words Test (TWT), a “Double Test” (DT), a visual acuity test, a high-fi eld magnetic resonance imaging (MRI) of the brain with morphometry of cerebral structures (FreeSurfer, FSL). Results. According to the MMSE score, MCI were found in 26 (58%) patients. During the DNT, depending on the state of memory, 14 participants of the study identifi ed a non-amnestic type of MCI (na-MCI), 15 — an amnestic variant with impaired reproduction (ar-MCI), and 16 people — an amnestic type with a primary memory defect (apm-MCI). Volume changes of the anterior corpus callosum segment (CCA) were signifi cantly associated with the Immediate Recall after 4th reading and the Delayed Recall in the general MCI group (rho = 0.58; 0.58; p < 0.05) and the apmMCI group (rho = 0.6; 0.56; p < 0.05). Kruskal–Wallis Test showed that there were signifi cant group diff erences in the volumes of the CCA, right caudate nucleus, left cerebellar hemisphere cortex, posterior corpus callosum segment and left thalamus. At the same time, the fi rst three structures were combined into a set of informative features for differentiating the type of MCI based on the results of Forward stepwise Discriminant Analysis with a 77.3% accurate classifi cation rate (Wilks’s Lambda: 0.35962; approx. F (6.78) = 8.678, p < 0.001). ROC-analysis established the threshold values of the CCA volumes of ≤ 0.05% and the right caudate nucleus volumes of ≤ 0.23% (81.25% sensitivity in both cases; 62.1% and 60.7% specifi city; AUC 0.787 and 0.767; 95% CI 0.639–0.865 and 0.615–0.881; OR 7.1 and 6.7 (95% CI 1.6–30.6 and 1.6–29), associated with a memory defect in persons with MCI, while the ORs are 7.1 and 6.7 (95% CI 1.6–30.6 and 1.6–29), respectively. When both cerebral structures were included in the logit model, 88.6% classifi cation accuracy, 92.6% sensitivity, and 82.4% specifi city of the method were achieved. Conclusion. It has been demonstrated that classifying patients into the various types of MCI based on the data of memory function refl ected by the DNT and supplemented with MRI morphometry of the brain areas may be used as a sensitive and specifi c instrument for determining the category of patients with a high risk of Alzheimer’s disease. A neuropsychological profi le with a defect in primary memory, atrophic changes in anterior segment of the corpus callosum and the right caudate nucleus have been proposed as biomarkers of poor prognosis. Further longitudinal studies are necessary to clarify the proposed biomarkers of poor prognosis information and to detail the mechanisms of the neurodegenerative process.


2021 ◽  
Vol 13 ◽  
Author(s):  
Peng Liu ◽  
Xinyang Yu ◽  
Xiaohong Dai ◽  
Wei Zou ◽  
Xueping Yu ◽  
...  

To study the effect of scalp acupuncture (SA) on the mitophagy signaling pathway in the caudate nucleus of Sprague-Dawley rats following intracerebral hemorrhage (ICH). An ICH model was established by injecting autologous arterial blood into the caudate nucleus in 200 male Sprague-Dawley rats, which were divided into five groups: sham, ICH, 3-methyladenine group (3-MA, 30 mg/kg), SA, and SA+3-MA. Animals were analyzed at 6 and 24 h as well as at 3 and 7 days. Composite neurological scale score was significantly higher in the SA group than in the ICH group. Transmission electron microscopy showed less structural damage and more autophagic vacuoles within brain in the SA group than in the ICH group. SA group showed higher levels of Beclin1, Parkin, PINK1, NIX protein, and a lower level of Caspase-9 in brain tissue. These animals consequently showed less neural cell apoptosis. Compared with the SA group, however, the neural function score and levels of mitophagy protein in the SA+3-MA group were decreased, neural cell apoptosis was increased with more severe structural damage, which suggested that 3-MA may antagonize the protective effect of SA on brain in rats with ICH. SA may mitigate the neurologic impairment after ICH by enhancing mitophagy and reducing apoptosis.


Pathologia ◽  
2021 ◽  
Vol 18 (3) ◽  
pp. 295-302
Author(s):  
T. V. Shulyatnikova ◽  
V. O. Tumaskyi

Pathophysiology of sepsis-associated encephalopathy (SAE) is linked to blood-brain barrier breakdown, neuroinflammation and neurotransmitter imbalance in the brain. Astroglia, the most abundant cell population within the brain, plays the critical role in control of all kinds of homeostatic processes, thereby regulating the adaptive reactions of the brain to various challenges. Astroglia are highly heterogenous across the brain regions, therefore, damaging factors stimulate heterogenous astroglial reactivity and response in different brain regions. The aim of this study was determining immunohistochemical features of GFAP expression in various brain regions in the model of rodent experimental sepsis. Materials and methods. The experiment was performed in Wistar rats: control group of 5 sham-operated rats and the main group of 20 rats subjected to cecum ligation and puncture (CLP) procedure. The immunohistochemical study of GFAP expression in the sensorimotor cortex, subcortical white matter, hippocampal, thalamic and caudate nucleus/putamen regions was performed from 20 to 48 hours of the postoperative period. Results. Starting from the 12th hour after CLP, animals began display progressive increase in signs of periorbital exudation, piloerection, fever-/hypothermia, diarrhea, social isolation, lethargy, and respiratory impairment. In the period of 20–38 hours, 9 animals showed expressed previously listed symptoms and were euthanized (CLP-B – lethal group), 11 rats survived until 48 hours of the experiment (CLP-A – survived group). In the lethal group, starting from 20 to 38 hours after the CLP procedure, a significant (relative to control) regionally-specific dynamic increase in the level of GFAP expression was observed in the brain: in the cortex – by 465 %, in the subcortical white matter – by 198 %, in the hippocampus – by 250 %, from the 23rd hour – in the caudate nucleus/putamen by 18 %. In the thalamus, no significant changes in the level of GFAP expression were observed. In the cortex and hippocampus of survived animals, 48 h after CLP, higher values of GFAP expression were observed comparing to the group of non-survived animals. Conclusions. Under conditions of the experimental SAE, an early dynamic increase in the astroglial reactivity was observed in the cortex, hippocampus, white matter, and caudate nucleus/putamen of the brain with the most significant increase of indicators in the cortex and hippocampus, which potentially indicates relatively more vulnerable areas of the brain to damaging factors, as well as places of the most active intercellular interaction in the condition of systemic inflammation. Higher values of GFAP expression in the cortex and hippocampus of survived animals at 48 hours of the experiment, compared with indicators of non-survived group, indicate increased astroglial reactivity in these brain regions at the noted time period, accompanied by relatively more favorable clinical course of the disease.  


2021 ◽  
Vol 15 ◽  
Author(s):  
Johannes Bech Steinmüller ◽  
Carsten Reidies Bjarkam ◽  
Dariusz Orlowski ◽  
Jens Christian Hedemann Sørensen ◽  
Andreas Nørgaard Glud

Background: Deep brain stimulation (DBS) of the dorsal subthalamic nucleus (STN) is a validated neurosurgical treatment of Parkinson’s Disease (PD). To investigate the mechanism of action, including potential DBS induced neuroplasticity, we have previously used a minipig model of Parkinson’s Disease, although the basal ganglia circuitry was not elucidated in detail.Aim: To describe the cortical projections from the primary motor cortex (M1) to the basal ganglia and confirm the presence of a cortico-striatal pathway and a hyperdirect pathway to the subthalamic nucleus, respectively, which is known to exist in primates.Materials and Methods: Five female Göttingen minipigs were injected into the primary motor cortex (n = 4) and adjacent prefrontal cortex (n = 1) with the anterograde neuronal tracer, Biotinylated Dextran Amine (BDA). 4 weeks later the animals were sacrificed and the brains cryosectioned into 30 μm thick coronal sections for subsequent microscopic analysis.Results: The hyperdirect axonal connections from the primary motor cortex were seen to terminate in the dorsolateral STN, whereas the axonal projections from the prefrontal cortex terminated medially in the STN. Furthermore, striatal tracing from the motor cortex was especially prominent in the dorsolateral putamen and less so in the dorsolateral caudate nucleus. The prefrontal efferents were concentrated mainly in the caudate nucleus and to a smaller degree in the juxtacapsular dorsal putamen, but they were also found in the nucleus accumbens and ventral prefrontal cortex.Discussion: The organization of the Göttingen minipig basal ganglia circuitry is in accordance with previous descriptions in primates. The existence of a cortico-striatal and hyperdirect basal ganglia pathway in this non-primate, large animal model may accordingly permit further translational studies on STN-DBS induced neuroplasticity of major relevance for future DBS treatments.


2021 ◽  
Author(s):  
Clemens Mielacher ◽  
Dirk Scheele ◽  
Maximilian Kiebs ◽  
Laura Schmitt ◽  
Torge Dellert ◽  
...  

Introduction: Affective touch is highly rewarding and an integral part of social relationships. Major depressive disorder (MDD) is characterized by severe impairments in reward processing, but the neural effects of social touch in MDD are still elusive. Objective: We aimed to determine whether the neural processing of social touch is impaired in MDD and to assess the impact of antidepressant therapy. Methods: Before and after antidepressant treatment, 53 MDD patients and 41 healthy controls underwent functional magnetic resonance imaging (fMRI) while receiving social touch. We compared neural responses to social touch in the reward network, behavioral ratings of touch comfort and general aversion to interpersonal touch in MDD patients to controls. Additionally, we examined the effect of treatment response on those measures. Results: Clinical symptoms decreased after treatment and 43.4% of patients were classified as responders. Patients reported higher aversion to social touch and lower comfort ratings during the fMRI paradigm than controls. Patients showed reduced responses to social touch in the nucleus accumbens, caudate nucleus and putamen than controls, both before and after treatment. Non-responders exhibited blunted response in the caudate nucleus and the insula compared to responders, again irrespective of treatment. Conclusions: These findings confirm our hypothesis that interpersonal touch as an indicator of social reward processing is impaired in MDD. Persistent dysfunctional processing of social touch despite clinical improvements may constitute a latent risk factor for social withdrawal and isolation. New treatment approaches are necessary to specifically target social reward processing and disturbed body awareness in MDD.


2021 ◽  
Author(s):  
Peter Raab ◽  
Stefan Ropele ◽  
Eva Bültmann ◽  
Rolf Salcher ◽  
Heinrich Lanfermann ◽  
...  

Abstract Purpose Aging is the most significant determinant for brain iron accumulation in the deep grey matter. Data on brain iron evolution during brain maturation in early childhood are limited. The purpose of this study was to investigate age-related iron deposition in the deep grey matter in children using quantitative susceptibility (QSM) and R2* mapping. Methods We evaluated brain MRI scans of 74 children (age 6–154 months, mean 40 months). A multi-echo gradient-echo sequence obtained at 3 Tesla was used for the QSM and R2* calculation. Susceptibility of the pallidum, head of caudate nucleus, and putamen was correlated with age and compared between sexes. Results Susceptibility changes in all three nuclei correlated with age (correlation coefficients for QSM/R2*: globus pallidus 0.955/0.882, caudate nucleus 0.76/0.65, and putamen 0.643/0.611). During the first 2 years, the R2* values increased more rapidly than the QSM values, indicating a combined effect of iron deposition and myelination, followed by a likely dominating effect of iron deposition. There was no significant gender difference. Conclusion QSM and R2* can monitor myelin maturation processes and iron accumulation in the deep grey nuclei of the brain in early life and may be a promising tool for the detection of deviations of this normal process. Susceptibility in the deep nuclei is almost similar early after birth and increases more quickly in the pallidum. The combined use of QSM and R2* analysis is beneficial.


2021 ◽  
Vol 15 ◽  
Author(s):  
Rong-Jun Ni ◽  
Yu-Mian Shu ◽  
Tao Li ◽  
Jiang-Ning Zhou

Day-active tree shrews have a well-developed internal capsule (ic) that clearly separates the caudate nucleus (Cd) and putamen (Pu). The striatum consists of the Cd, ic, Pu, and accumbens nucleus (Acb). Here, we characterized the cytoarchitecture of the striatum and the whole-brain inputs to the Cd, Pu, and Acb in tree shrews by using immunohistochemistry and the retrograde tracer Fluoro-Gold (FG). Our data show the distribution patterns of parvalbumin (PV), nitric oxide synthase (NOS), calretinin (CR), and tyrosine hydroxylase (TH) immunoreactivity in the striatum of tree shrews, which were different from those observed in rats. The Cd and Pu mainly received inputs from the thalamus, motor cortex, somatosensory cortex, subthalamic nucleus, substantia nigra, and other cortical and subcortical regions, whereas the Acb primarily received inputs from the anterior olfactory nucleus, claustrum, infralimbic cortex, thalamus, raphe nucleus, parabrachial nucleus, ventral tegmental area, and so on. The Cd, Pu, and Acb received inputs from different neuronal populations in the ipsilateral (60, 67, and 63 brain regions, respectively) and contralateral (23, 20, and 36 brain regions, respectively) brain hemispheres. Overall, we demonstrate that there are species differences between tree shrews and rats in the density of PV, NOS, CR, and TH immunoreactivity in the striatum. Additionally, we mapped for the first time the distribution of whole-brain input neurons projecting to the striatum of tree shrews with FG injected into the Cd, Pu, and Acb. The similarities and differences in their brain-wide input patterns may provide new insights into the diverse functions of the striatal subregions.


Sign in / Sign up

Export Citation Format

Share Document