pickering emulsion
Recently Published Documents


TOTAL DOCUMENTS

958
(FIVE YEARS 501)

H-INDEX

56
(FIVE YEARS 17)

Author(s):  
Zhaoyu Zhang ◽  
Qiuhong Li ◽  
Ning Sun ◽  
Yunxiao Liu ◽  
Shujin Ge ◽  
...  

2022 ◽  
Vol 8 ◽  
Author(s):  
Xiaotong Yang ◽  
Haomin Sui ◽  
Hongshan Liang ◽  
Jing Li ◽  
Bin Li

The gel properties of sodium alginate (SA) have been revealed to be strongly correlated with its ratio of D-mannuronate to L-guluronate (M/G ratio). Herein, we focused on SA with different M/G ratios to conduct an in-depth study on the effect of the M/G ratio difference on physicochemical stability and calcium release behavior of the Pickering emulsion stabilized by calcium carbonate (CaCO3). The oil phase was added to the aqueous phase, prepared by SA with different M/G ratios (2.23, 0.89, and 0.56) and CaCO3, for one-step shearing to obtain the E1, E2, and E3 emulsions, respectively. The results of the particle size, microstructure, long-term stability, rheological, and microrheological properties of the emulsions showed that the E3 emulsion, prepared by SA with a smaller M/G ratio, had a smaller particle size and has remained in a flow condition during the long-term storage, while the E1 and E2 emulsions had a gelation behavior and a stronger viscoelasticity. Moreover, the emulsion, as a liquid calcium supplement, is not only convenient for oral intake while meeting the calcium needs of the body, but also controls the release of Ca2+. The calcium release of the emulsions in a simulated gastric environment demonstrated that the calcium release ratio increased with the decrease of SA concentration, with the increase of M/G ratio, and with the decrease of oil phase volume.


2021 ◽  
Vol 8 ◽  
Author(s):  
Chong-hao Bi ◽  
Shang-yi Chi ◽  
Tong Zhou ◽  
Xue-ying Wang ◽  
Jia-yi Zhang ◽  
...  

In this paper, a novel high-internal-phase Pickering emulsion (HIPPE) prepared by acid-induced self-assembly SPI gel (A/S-SPIG) was investigated. The steady-state shear test results showed that all HIPPEs were typical shear thinning emulsion, which could form stable emulsion (0.2–1.2% SPI concentration). The network structure of HIPPE stabilized by A/S-SPIG particles (0.2–1.2% SPI concentration) was continuously enhanced with increasing SPI concentration. The high concentration of SPI particles increased the crystallization temperature of the stabilized HIPPE. Meanwhile, at a concentration of 1.2%, HIPPE has the best cohesive property and stability against delamination due to weakened mobility. In conclusion, A/S-SPIG was proved excellent HIPPE stabilized particle.


Sign in / Sign up

Export Citation Format

Share Document