upstream pressure
Recently Published Documents


TOTAL DOCUMENTS

85
(FIVE YEARS 12)

H-INDEX

13
(FIVE YEARS 1)

2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Karolina Svensson ◽  
Simon Södergren ◽  
Klas Hjort

AbstractBy using the temperature dependence of viscosity, we introduce a novel type of microfluidic lab-on-a-chip back pressure regulator (BPR) that can be integrated into a micro-total-analysis-system. A BPR is an important component used to gain pressure control and maintain elevated pressures in e.g. chemical extractions, synthesis, and analyses. Such applications have been limited in microfluidics, since the back pressure regularly has been attained by passive restrictors or external large-scale BPRs. Herein, an active microfluidic BPR is presented, consisting of a glass chip with integrated thin-film heaters and thermal sensors. It has no moving parts but a fluid restrictor where the flow resistance is controlled by the change of viscosity with temperature. Performance was evaluated by regulating the upstream pressure of methanol or water using a PID controller. The developed BPR has the smallest reported dead volume of 3 nL and the thermal actuation has time constants of a few seconds. The pressure regulation were reproducible with a precision in the millibar range, limited by the pressure sensor. The time constant of the pressure changes was evaluated and its dependence of the total upstream volume and the compressibility of the liquids is introduced.


2021 ◽  
Vol 13 (17) ◽  
pp. 9760
Author(s):  
Caroline Tahon ◽  
Peter J. Batt

This paper explores environmental and socially sustainable practices among different actors in the Bordeaux wine value chain (WVC). The main research question is to identify the extent to which the different actors in the wine value chain are aligned in terms of practices and beliefs concerning the importance and implementation of sustainable practices. While each actor in the Bordeaux WVC performs different sustainable practices depending on the activities that they undertake, some share common practices and exert some upstream pressure on the value chain as they seek to support sustainable practices at the wine grape grower and wine producer level. Environmentally sustainable practices are more developed than socially sustainable practices and were more widely adopted by most of the WVC actors.


Energies ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3387
Author(s):  
Armani Batista ◽  
Mathias C. Ross ◽  
Christopher Lietz ◽  
William A. Hargus

Rotating detonation rocket engines (RDREs) exhibit various unsteady phenomena, including modal transitions, that significantly affect their operation, performance and stability. The dynamics of the detonation waves are studied during a descending modal transition (DMT) where four co-rotating detonations waves decrease to three in a gaseous methane-oxygen RDRE. Detonation wave tracking is applied to capture, visualize and analyze unsteady, 3D detonation wave dynamics data within the combustion chamber of the RDRE. The mechanism of a descending modal transition is the failure of a detonation wave in the RDRE, and in this study, the failing wave is identified along with its failure time. The regions upstream of each relative detonation show the mixture and flow-field parameters that drive detonation failure. Additionally, it is shown that descending modal transitions encompass multiple phases of detonation decay and recovery with respect to RDREs. The results show high upstream pressure, heat release and temperature, coupled with insufficient propellants, lead to detonation wave failure and non-recovery of the trailing detonation wave during a descending modal transition. Finally, the Wolanski wave stability criterion regarding detonation critical reactant mixing height provides insight into detonation failure or sustainment.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Farzad Rokhsar Talabazar ◽  
Mohammad Jafarpour ◽  
Merve Zuvin ◽  
Hongjian Chen ◽  
Moein Talebian Gevari ◽  
...  

AbstractHydrodynamic cavitation is one of the major phase change phenomena and occurs with a sudden decrease in the local static pressure within a fluid. With the emergence of microelectromechanical systems (MEMS), high-speed microfluidic devices have attracted considerable attention and been implemented in many fields, including cavitation applications. In this study, a new generation of ‘cavitation-on-a-chip’ devices with eight parallel structured microchannels is proposed. This new device is designed with the motivation of decreasing the upstream pressure (input energy) required for facile hydrodynamic cavitation inception. Water and a poly(vinyl alcohol) (PVA) microbubble (MB) suspension are used as the working fluids. The results show that the cavitation inception upstream pressure can be reduced with the proposed device in comparison with previous studies with a single flow restrictive element. Furthermore, using PVA MBs further results in a reduction in the upstream pressure required for cavitation inception. In this new device, different cavitating flow patterns with various intensities can be observed at a constant cavitation number and fixed upstream pressure within the same device. Moreover, cavitating flows intensify faster in the proposed device for both water and the water–PVA MB suspension in comparison to previous studies. Due to these features, this next-generation ‘cavitation-on-a-chip’ device has a high potential for implementation in applications involving microfluidic/organ-on-a-chip devices, such as integrated drug release and tissue engineering.


Author(s):  
Emma Frosina ◽  
Gianluca Marinaro ◽  
Amedeo Amoresano ◽  
Adolfo Senatore

Abstract The performance of spool valves can deteriorate and noise can occur due to cavitation. The noise sound levels caused by cavitation are influenced by many parameters, among which the most important is not-optimal geometry of components. In this paper, a 2 ways - 2 positions directional control valve was studied using experimental and numerical approaches. Tests were performed on a plexiglass body and steel spool analyzing the cavitating area that develops in U-notches. A dedicated test rig was equipped with a high-speed camera placed directly in front of the area of interest where cavitation occurs. Different working conditions were tested by varying the upstream pressure to encourage the development of cavitation. Images were acquired and post-processed, focusing the contour extraction between the liquid and gaseous phases. The images were compared with results from three-dimensional CFD numerical simulations performed using commercial software. The numerical estimation of flow characteristics corroborated the results from investigations carried out using a fast camera, including periodic cavitation structures. This study demonstrates the importance and usefulness of using a three-dimensional CFD approach during the prototyping phase to create quieter component designs.


2021 ◽  
Author(s):  
Denis Anuprienko ◽  
Viktoriya Yarushina ◽  
Yury Podladchikov

<p>Understanding interactions between rock and fluids is important for many applications including CO<sub>2</sub> storage in the subsurface. Today significant effort is aimed at research on CO<sub>2</sub> flow through low-permeable shale formations. In some experiments, CO<sub>2</sub> is injected in a shale sample at a constant rate, and the upstream pressure exhibits rise until a certain moment followed by a decline, representing the so called breakthrough phenomenon. After the breakthrough, downstream flux significantly rises. This behavior was thought to be the result of fracture occurence or mechanical effects. <br><br>Here, we present a 3D numerical model of flow through experiments in shale. Our model accounts for poroelastic compaction/decompaction of shale, its time-dependent permeability, and two-phase flow, the fluid phases being CO<sub>2</sub> and air. The model also accounts for a capillary entry pressure threshold observed in experiments. The key feature of the model are saturation-based relative permeabilities which result in sharp overall permeability increases as the CO<sub>2</sub> moves through the shale sample. The model is implemented for 3D calculations with the finite volume method. Our results show that CO<sub>2</sub> breakthrough is a natural outcome of two-phase fluid flow dynamics and does not need a fracture to exhibit pressure behavior observed in experiments.</p>


Author(s):  
Kamal K. Botros ◽  
Michael Martens

Abstract Current trends in greenfield natural gas compression facilities and high-pressure gas transmission pipelines are designs for high pressure operation, e.g. PN150. At such high pressures, sound pressure level (SPL) of the noise generated during a planned blowdown can be as high as 165–175 dBA at 1 m distance away from the blowdown stack tip. Even double hearing protection would not be sufficient for an operator opening the blowdown valve at the blowdown assembly even for a short period of time. Blowdown silencers mounted on top of the blowdown stack are limited to the degree of noise suppression they offer (typically of the order of 30 to 40 dB), let alone the requirement for extensive support structures to hold the massive weight on the stack top. One innovation to alleviate this issue, is to place a silencer on a skid on a ground-level pad/support system, at a sufficient distance away from the blowdown stack. In this way, the blowdown valve operator would be exposed to a much lower SPL, as well as the silencer can be as large as desired being skid mounded on the ground. The main issue to be addressed is the dynamic thrust loads That would otherwise be afflicted on the various pipe segments of the piping connecting the blowdown stack top to the location of the blowdown silencer located distance away. Clearly this piping will include several above ground pipe segments, bends, tees and fittings that need to be adequately supported to withstand the dynamic loads as the blowdown valve opens. This paper presents a model approach based on solving the temporal-spatial governing equations in the form of 1-D hyperbolic differential equations, with boundary conditions accounting for the blowdown valve size and type, trim characteristics and opening time, upstream gas pressure and temperature, and downstream restriction equivalent orifice size at the inlet to the blowdown silencer. Results are presented for a case study of a single and dual blowdown assemblies equipped with reduced-bore ball valves (8″ × 6″), with lead piping of NPS 8 joining into NPS 12 header and finally splitting into two ground mounted silencers some 30 meters away. Thrust loads at each segment of these connecting piping were found to depend on whether one or dual blowdown valves are open simultaneously, upstream pressure, and more importantly the location of the choke point (Mach = 1) whether at the blowdown valve itself or at the silencer inlet diffuser orifice. The later was found to be the most critical parameter. The most important objective when designing such a system is to ensure that the choke point is at the silencer inlet orifice to minimize thrust loading on the blowdown valve(s) as well as along the entire lead piping.


Membranes ◽  
2020 ◽  
Vol 10 (8) ◽  
pp. 188 ◽  
Author(s):  
Riccardo Casadei ◽  
Marco Giacinti Baschetti ◽  
Myung Jin Yoo ◽  
Ho Bum Park ◽  
Loris Giorgini

In this work, the behavior of new GO-based mixed matrix membranes was tested in view of their use as CO2-selective membrane in post combustion carbon capture applications. In particular, the new materials were obtained by mixing of Pebax® 2533 copolymer with different types of graphene oxide (GO). Pebax® 2533 has indeed lower selectivity, but higher permeability than Pebax® 1657, which is more commonly used for membranes, and it could therefore benefit from the addition of GO, which is endowed with very high selectivity of CO2 with respect to nitrogen. The mixed matrix membranes were obtained by adding different amounts of GO, from 0.02 to 1% by weight, to the commercial block copolymers. Porous graphene oxide (PGO) and GO functionalized with polyetheramine (PEAGO) were also considered in composites produced with similar procedure, with a loading of 0.02%wt. The obtained films were then characterized by using SEM, DSC, XPS analysis and permeability experiments. In particular, permeation tests with pure CO2 and N2 at 35°C and 1 bar of upstream pressure were conducted for the different materials to evaluate their separation performance. It has been discovered that adding these GO-based nanofillers to Pebax® 2533 matrix does not improve the ideal selectivity of the material, but it allows to increase CO2 permeability when a low filler content, not higher than 0.02 wt%, is considered. Among the different types of GO, then, porous GO seems the most promising as it shows CO2 permeability in the order of 400 barrer (with an increase of about 10% with respect to the unloaded block copolymer), obtained without reducing the CO2/N2 selectivity of the materials, which remained in the order of 25.


2020 ◽  
Vol 21 (2) ◽  
pp. 41-54
Author(s):  
ABDUL-FATTAH ALI ◽  
Mohanad M-Ridha

The aim of this work was to establish a general design basis for pilot-scale units to treat textile dyeing wastewater containing recalcitrant organic chemicals by hydrodynamic cavitation (HC) using orifices of various geometries. Relevant tabulated data available in the literature were analyzed and correlated to obtain universal relationships to this end. In spite of extensive effort, most of the obtained correlations were system-specific, which still can be used for design using their respective orifice geometries as demonstrated. However, one salient general relationship links the pipe’s dimensionless loss coefficient (KLP) to the pipe’s Reynolds number (ReP), encompassing all data under consideration, which may serve as an additional design option to optimize such units. The implication of this relationship is a lower upstream pressure (P1) value with an increase in pipe diameter while using the same specified orifice and achieving the same desired cavitation number (Cv). The ratio of P1 value in the larger pipe to its value in the smaller pipe is a function of the smaller pipe diameter (DS) to the larger pipe diameter (DL) ratio: (P1 in DL) / (P1 in DS) = (DS /DL)2.33. A lower P1 value will increase the cavitation yield by decreasing the expended energy, especially if the required number of passes is large. Additionally, the variation of the orifices’ hole loss coefficient (KLh) with the ratio of the holes area to the pipe cross-sectional area (Ah/Ap) for cavitating flow is compared with that for non-cavitating/incipient cavitation flow reported in the literature. ABSTRAK: Tujuan kajian ini diadakan bagi mereka bentuk dasar umum unit skala-pandu bagi merawat pewarnaan air buangan tekstil yang mengandungi kimia organik rekalsitran daripada peronggaan hidrodinamik (HC) menggunakan orifis pelbagai geometri. Data berjadual berkaitan yang ada dalam kajian lepas dianalisa dan dikaitkan bagi mendapatkan kaitan universal hingga akhir. Walaupun pelbagai usaha telah dijalankan, banyak kaitan didapati mengguna pakai sistem-tertentu, di mana boleh digunakan bagi mereka cipta menggunakan geometri orifis yang ditunjukkan. Walau bagaimanapun, bagi menghubung kait pekali langsung tanpa dimensi (KLP) kepada paip nombor Reynolds (ReP), meliputi semua data di bawah pertimbangan, di mana membantu pilihan rekaan tambahan bagi mengoptimum unit tersebut. Implikasi hubungan ini adalah nilai tekanan hulu sungai bawah (P1) dengan penambahan diameter paip dengan menggunakan orifis sama yang sebenar dan mendapati nombor peronggaan yang sama diingini (Cv). Nisbah nilai P1 dalam paip besar kepada nilai paip kecil adalah berkadaran pada nisbah diameter paip kecil (DS) kepada diameter paip besar (DL):   (P1 dalam DL) / (P1 in DS) = (DS /DL)2.33.


2020 ◽  
Vol 18 (1) ◽  
Author(s):  
Jovana Janjic ◽  
Malin K Larsson ◽  
Anna Bjällmark

Abstract Background Vascular thrombosis can be treated pharmacologically, however, serious shortcomings such as bleeding may occur. Several studies suggest that sonothrombolysis can induce lysis of the clots using ultrasound. Moreover, intravenously injected thin-shelled microbubbles (MBs) combined with ultrasound can further improve clot lysis. Thick-shelled MBs have been used for drug delivery, targeting and multimodal imaging. However, their capability to enhance sonothrombolysis is unknown. In this study, using an in-vitro set-up, the enhancement of clot lysis using ultrasound and thick-shelled MBs was investigated. Thin-shelled MBs was used for comparison. Method The main components in the in-vitro set-up was a vessel mimicking phantom, a pressure mearing system and programmable ultrasound machine. Blood clots were injected and entrapped on a pore mesh in the vessel phantom. Four different protocols for ultrasound transmission and MB exposure (7 blood clots/protocol) were considered together with a control test were no MBs and ultrasound were used. For each protocol, ultrasound exposure of 20 min was used. The upstream pressure of the partially occluded mesh was continuously measured to assess clot burden. At the end of each protocol blood clots were removed from the phantom and the clot mass loss was computed. Results For the thick-shelled MBs no difference in clot mass loss compared with the control tests was found. A 10% increase in the clot mass loss compared with the control tests was found when using thin-shelled MBs and low pressure/long pulses ultrasound exposure. Similarly, in terms of upstream pressure over exposure time, no differences were found when using the thick-shelled MBs, whereas thin-shelled MBs showed a 15% decrease achieved within the first 4 min of ultrasound exposure. Conclusion No increase in clot lysis was achieved using thick-shelled MBs as demonstrated by no significant change in clot mass or upstream pressure. Although thick-shelled MBs are promising for targeting and drug delivery, they do not enhance clot lysis when considering the ultrasound sequences used in this study. On the other hand, ultrasound in combination with thin-shelled MBs can facilitate thrombolysis when applying long ultrasound pulses with low pressure.


Sign in / Sign up

Export Citation Format

Share Document