natural target
Recently Published Documents


TOTAL DOCUMENTS

78
(FIVE YEARS 14)

H-INDEX

20
(FIVE YEARS 2)

Cancers ◽  
2022 ◽  
Vol 14 (2) ◽  
pp. 427
Author(s):  
Nadja Meumann ◽  
Christian Schmithals ◽  
Leroy Elenschneider ◽  
Tanja Hansen ◽  
Asha Balakrishnan ◽  
...  

Although therapeutic options are gradually improving, the overall prognosis for patients with hepatocellular carcinoma (HCC) is still poor. Gene therapy-based strategies are developed to complement the therapeutic armamentarium, both in early and late-stage disease. For efficient delivery of transgenes with antitumor activity, vectors demonstrating preferred tumor tropism are required. Here, we report on the natural tropism of adeno-associated virus (AAV) serotype 2 vectors for HCC. When applied intravenously in transgenic HCC mouse models, similar amounts of vectors were detected in the liver and liver tumor tissue. In contrast, transduction efficiency, as indicated by the level of transgene product, was moderate in the liver but was elevated up to 19-fold in mouse tumor tissue. Preferred transduction of HCC compared to hepatocytes was confirmed in precision-cut liver slices from human patient samples. Our mechanistic studies revealed that this preference is due to the improved intracellular processing of AAV2 vectors in HCC, resulting, for example, in nearly 4-fold more AAV vector episomes that serve as templates for gene transcription. Given this background, AAV2 vectors ought to be considered to strengthen current—or develop novel—strategies for treating HCC.


2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Shizhang Liu

With the continuous development of society and economy, diversified presentation and publicity of landscape are becoming more and more popular among the public, such as using color pictures to display multimedia publicity videos or APP, WeChat public accounts, and other new media. There are various ways of expression. Against the limitations of color image landscape, this article introduced the PFA algorithm, during the experiment of hand-painted landscape pictures, the effect of color hand-painted images is evaluated by using the coordination degree of natural target detection scene, and the corresponding image evaluation index values are obtained for effective analysis, and the prediction model is established. The simulation results show that the PFA algorithm is effective and can support the evaluation of the hand-painted effect of color landscape photos.


Toxins ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 751
Author(s):  
Siro Luvisetto

Botulinum neurotoxins (BoNTs) are potent inhibitors of synaptic vesicle fusion and transmitter release. The natural target of BoNTs is the peripheral neuromuscular junction (NMJ) where, by blocking the release of acetylcholine (ACh), they functionally denervate muscles and alter muscle tone. This leads them to be an excellent drug for the therapy of muscle hyperactivity disorders, such as dystonia, spasticity, and many other movement disorders. BoNTs are also effective in inhibiting both the release of ACh at sites other than NMJ and the release of neurotransmitters other than ACh. Furthermore, much evidence shows that BoNTs can act not only on the peripheral nervous system (PNS), but also on the central nervous system (CNS). Under this view, central changes may result either from sensory input from the PNS, from retrograde transport of BoNTs, or from direct injection of BoNTs into the CNS. The aim of this review is to give an update on available data, both from animal models or human studies, which suggest or confirm central alterations induced by peripheral or central BoNTs treatment. The data will be discussed with particular attention to the possible therapeutic applications to pathological conditions and degenerative diseases of the CNS.


Molecules ◽  
2021 ◽  
Vol 26 (15) ◽  
pp. 4462
Author(s):  
Ni Made Pitri Susanti ◽  
Daryono Hadi Tjahjono

In cell development, the cell cycle is crucial, and the cycle progression’s main controllers are endogenous CDK inhibitors, cyclin-dependent kinases (CDKs), and cyclins. In response to the mitogenic signal, cyclin D is produced and retinoblastoma protein (Rb) is phosphorylated due to activated CDK4/CDK6. This causes various proteins required in the cell cycle progression to be generated. In addition, complexes of CDK1-cyclin A/B, CDK2-cyclin E/A, and CDK4/CDK6-cyclin D are required in each phase of this progression. Cell cycle dysregulation has the ability to lead to cancer. Based on its role in the cell cycle, CDK has become a natural target of anticancer therapy. Therefore, understanding the CDK structures and the complex formed with the drug, helps to foster the development of CDK inhibitors. This development starts from non-selective CDK inhibitors to selective CDK4/CDK6 inhibitors, and these have been applied in clinical cancer treatment. However, these inhibitors currently require further development for various hematologic malignancies and solid tumors, based on the results demonstrated. In drug development, the main strategy is primarily to prevent and asphyxiate drug resistance, thus a determination of specific biomarkers is required to increase the therapy’s effectiveness as well as patient selection suitability in order to avoid therapy failure. This review is expected to serve as a reference for early and advanced-stage researchers in designing new molecules or repurposing existing molecules as CDK4/CDK6 inhibitors to treat breast cancer.


Author(s):  
S Grandis ◽  
J J Mohr ◽  
M Costanzi ◽  
A Saro ◽  
S Bocquet ◽  
...  

Abstract We perform a cross validation of the cluster catalog selected by the red-sequence Matched-filter Probabilistic Percolation algorithm (redMaPPer) in Dark Energy Survey year 1 (DES-Y1) data by matching it with the Sunyaev-Zel’dovich effect (SZE) selected cluster catalog from the South Pole Telescope SPT-SZ survey. Of the 1005 redMaPPer selected clusters with measured richness $\hat{\lambda }>40$ in the joint footprint, 207 are confirmed by SPT-SZ. Using the mass information from the SZE signal, we calibrate the richness–mass relation using a Bayesian cluster population model. We find a mass trend λ∝MB consistent with a linear relation (B ∼ 1), no significant redshift evolution and an intrinsic scatter in richness of σλ = 0.22 ± 0.06. By considering two error models, we explore the impact of projection effects on the richness–mass modelling, confirming that such effects are not detectable at the current level of systematic uncertainties. At low richness SPT-SZ confirms fewer redMaPPer clusters than expected. We interpret this richness dependent deficit in confirmed systems as due to the increased presence at low richness of low mass objects not correctly accounted for by our richness-mass scatter model, which we call contaminants. At a richness $\hat{\lambda }=40$, this population makes up $>12\%$ (97.5 percentile) of the total population. Extrapolating this to a measured richness $\hat{\lambda }=20$ yields $>22\%$ (97.5 percentile). With these contamination fractions, the predicted redMaPPer number counts in different plausible cosmologies are compatible with the measured abundance. The presence of such a population is also a plausible explanation for the different mass trends (B ∼ 0.75) obtained from mass calibration using purely optically selected clusters. The mean mass from stacked weak lensing (WL) measurements suggests that these low mass contaminants are galaxy groups with masses ∼3- 5 × 1013 M⊙ which are beyond the sensitivity of current SZE and X-ray surveys but a natural target for SPT-3G and eROSITA.


2021 ◽  
Vol 8 ◽  
Author(s):  
Mostafa Hamada ◽  
Varsha Bhakta ◽  
Sara N. Andres ◽  
William P. Sheffield

Alpha-1 antitrypsin (AAT, also known as alpha-1 proteinase inhibitor or SERPINA1) is the most abundant member of the serpin superfamily found in human plasma. The naturally occurring variant AAT M358R, altered at the P1 position of the critical reactive center loop (RCL), is re-directed away from inhibition of AAT's chief natural target, neutrophil elastase, and toward accelerated inhibition of thrombin (FIIa), kallikrein (Kal), and other proteases such as factor XIa (FXIa). FXIa is an emerging target for the development of antithrombotic agents, since patients with FXI deficiency are protected from thromboembolic disease and do not exhibit a strong bleeding tendency. Previously, we used phage display, bacterial lysate screening, and combinatorial mutagenesis to identify AAT-RC, an engineered AAT M358R with additional changes between RCL positions P7-P3', CLEVEPR-STE [with changes bolded and the P1-P1' (R358-S359) reactive center shown as R-S]. AAT-RC was 279- and 16-fold more selective for FXIa/IIa or FXIa/Kal than AAT M358R; the increased selectivity came at a cost of a 2.3-fold decrease in the rate of FXIa inhibition and a 3.3-fold increase in the stoichiometry of inhibition (SI). Here, we asked which alterations in AAT-RC were most important for the observed increases in selectivity for FXIa inhibition. We back-mutated AAT-RC to AAT-RC-1 (P7-P3' FLEVEPRSTE), AAT-RC-2 (P7-P3' FLEAEPRSTE), and AAT RC-3 (P7-P3' FLEAIPR-STE). Proteins were expressed as cleavable, hexahistidine-tagged glutathione sulfotransferase fusion proteins in E. coli and purified by proteolytic elution from glutathione agarose, with polishing on nickel chelate agarose. Selectivity for FXIa over Kal of AAT-RC-1, −2, and −3 was 14, 21, and 2.3, respectively. AAT-RC-2 inhibited FXIa 31% more rapidly than AAT M358R, with the same SI, and enhanced selectivity for FXIa over Kal, FXa, FXIIa, activated protein C, and FIIa of 25-, 130-, 420-, 440-, and 470-fold, respectively. Structural modeling of the AAT-RC-2/FXIa encounter complex suggested that both E (Glu) substitutions at P3 and P3' may promote FXIa binding via hydrogen bonding to K192 in FXIa. AAT-RC-2 is the most selective and active AAT variant reported to date for FXIa inhibition and will be tested in animal models of thrombosis and bleeding.


2020 ◽  
Vol 117 (49) ◽  
pp. 31231-31241
Author(s):  
Eddie Rodríguez-Carballo ◽  
Lucille Lopez-Delisle ◽  
Andréa Willemin ◽  
Leonardo Beccari ◽  
Sandra Gitto ◽  
...  

TheHoxDgene cluster is critical for proper limb formation in tetrapods. In the emerging limb buds, different subgroups ofHoxdgenes respond first to a proximal regulatory signal, then to a distal signal that organizes digits. These two regulations are exclusive from one another and emanate from two distinct topologically associating domains (TADs) flankingHoxD, both containing a range of appropriate enhancer sequences. The telomeric TAD (T-DOM) contains several enhancers active in presumptive forearm cells and is divided into two sub-TADs separated by a CTCF-rich boundary, which defines two regulatory submodules. To understand the importance of this particular regulatory topology to controlHoxdgene transcription in time and space, we either deleted or inverted this sub-TAD boundary, eliminated the CTCF binding sites, or inverted the entire T-DOM to exchange the respective positions of the two sub-TADs. The effects of such perturbations on the transcriptional regulation ofHoxdgenes illustrate the requirement of this regulatory topology for the precise timing of gene activation. However, the spatial distribution of transcripts was eventually resumed, showing that the presence of enhancer sequences, rather than either their exact topology or a particular chromatin architecture, is the key factor. We also show that the affinity of enhancers to find their natural target genes can overcome the presence of both a strong TAD border and an unfavorable orientation of CTCF sites.


2020 ◽  
Vol 3 (1) ◽  
Author(s):  
Pavithran T. Ravindran ◽  
Maxwell Z. Wilson ◽  
Siddhartha G. Jena ◽  
Jared E. Toettcher

AbstractMany cell- and tissue-level functions are coordinated by intracellular signaling pathways that trigger the expression of context-specific target genes. Yet the input–output relationships that link pathways to the genes they activate are incompletely understood. Mapping the pathway-decoding logic of natural target genes could also provide a basis for engineering novel signal-decoding circuits. Here we report the construction of synthetic immediate-early genes (SynIEGs), target genes of Erk signaling that implement complex, user-defined regulation and can be monitored by using live-cell biosensors to track their transcription and translation. We demonstrate the power of this approach by confirming Erk duration-sensing by FOS, elucidating how the BTG2 gene is differentially regulated by external stimuli, and designing a synthetic immediate-early gene that selectively responds to the combination of growth factor and DNA damage stimuli. SynIEGs pave the way toward engineering molecular circuits that decode signaling dynamics and combinations across a broad range of cellular contexts.


Author(s):  
Eddie Rodríguez-Carballo ◽  
Lucille Lopez-Delisle ◽  
Andréa Willemin ◽  
Leonardo Beccari ◽  
Sandra Gitto ◽  
...  

ABSTRACTThe HoxD gene cluster is critical for proper limb formation in tetrapods. In the emerging limb buds, different sub-groups of Hoxd genes respond first to a proximal regulatory signal, then to a distal signal that organizes digits. These two regulations are exclusive from one another and emanate from two distinct TADs flanking HoxD, both containing a range of appropriate enhancer sequences. The telomeric TAD (T-DOM) contains several enhancers active in presumptive forearm cells and is divided into two sub-TADs separated by a CTCF-rich boundary, which defines two regulatory sub-modules. To understand the importance of this particular regulatory topology to control Hoxd gene transcription in time and space, we either deleted or inverted this sub-TAD boundary, eliminated the CTCF binding sites or inverted the entire T-DOM to exchange the respective positions of the two sub-TADs. The effects of such perturbations on the transcriptional regulation of Hoxd genes illustrate the requirement of this regulatory topology for the precise timing of gene activation. However, the spatial distribution of transcripts was eventually resumed, showing that the presence of enhancers sequences, rather than either their exact topology or a particular chromatin architecture, is the key factor. We also show that the affinity of enhancers to find their natural target genes can overcome the presence of both a strong TAD border and an unfavourable orientation of CTCF sites.SIGNIFICANCE STATEMENTMany genes important for vertebrate development are surrounded by series of remote enhancer sequences. Such regulatory landscapes and their target genes are usually located within the same chromatin domains, which appears to constrain the action of these regulatory sequences and hence to facilitate enhancer-promoter recognition and gene expression. We used the HoxD locus to assess the impact of modifying the regulatory topology upon gene activation in space and time. A series of chromosomal re-arrangements involving deletions and inversions reveals that the enhancer topology plays a role in the timing of gene activation. However, gene expression was often recovered, subsequently, illustrating the intrinsic capacity of some enhancers to find their target promoters despite an apparently adverse chromatin topology.


Author(s):  
Jenna N. Kelly ◽  
Laura Laloli ◽  
Philip V’kovski ◽  
Melle Holwerda ◽  
Jasmine Portmann ◽  
...  

AbstractRespiratory viruses, such as the 2009 pandemic strain of influenza A virus (IAV, H1N1pdm09), target cells found in the human respiratory epithelium. These cells, which form a pseudostratified epithelial layer along the airways, constitute the first line of defence against respiratory pathogens and play a crucial role in the host antiviral response. However, despite their key role in host defence, it remains unknown how distinct cell types in the respiratory epithelium respond to IAV infection and how these responses may contribute to IAV-induced pathogenesis and overall disease outcome. Here, we used single cell RNA-sequencing (scRNA-seq) to dissect the host response to IAV infection in its natural target cells. scRNA-seq was performed on human airway epithelial cell (hAEC) cultures infected with either wild-type pandemic IAV (WT) or with a mutant version of IAV (NS1R38A) that induced a robust innate immune response. We then characterized both the host and viral transcriptomes of more than 19,000 single cells across the 5 major cell types populating the human respiratory epithelium. For all cell types, we observed a wide spectrum of viral burden among single infected cells and a disparate host response between infected and bystander populations. Interestingly, we also identified multiple key differences in the host response to IAV among individual cell types, including high levels of pro-inflammatory cytokines and chemokines in secretory and basal cells and an important role for luminal cells in sensing and restricting incoming virus. Multiple infected cell types were shown to upregulate interferons (IFN), with type III IFNs clearly dominating the antiviral response. Transcriptional changes in genes related to cell differentiation, cell migration, and tissue repair were also identified. Strikingly, we also detected a shift in viral host cell tropism from non-ciliated cells to ciliated cells at later stages of infection and observed major changes in the cellular composition. Microscopic analysis of both WT and NS1R38A virus-infected hAECs at various stages of IAV infection revealed that the transcriptional changes we observed at 18 hpi were likely driving the downstream histopathological alterations in the airway epithelium. To our knowledge, this is the first study to provide a comprehensive analysis of the cell type-specific host antiviral response to a respiratory virus infection in its natural target cells – namely, the human respiratory epithelium.


Sign in / Sign up

Export Citation Format

Share Document