human spermatogenesis
Recently Published Documents


TOTAL DOCUMENTS

196
(FIVE YEARS 28)

H-INDEX

37
(FIVE YEARS 2)

2022 ◽  
Vol 22 (1) ◽  
pp. 100597
Author(s):  
Karolina Nowicka-Bauer ◽  
Agnieszka Malcher ◽  
Olga Włoczkowska ◽  
Marzena Kamieniczna ◽  
Marta Olszewska ◽  
...  

Cells ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 118
Author(s):  
Caroline Cazin ◽  
Yasmine Neirijnck ◽  
Corinne Loeuillet ◽  
Lydia Wehrli ◽  
Françoise Kühne ◽  
...  

The genetic landscape of male infertility is highly complex. It is estimated that at least 4000 genes are involved in human spermatogenesis, but only few have so far been extensively studied. In this study, we investigated by whole exome sequencing two cases of idiopathic non-obstructive azoospermia (NOA) due to severe hypospermatogenesis. After variant filtering and prioritizing, we retained for each patient a homozygous loss-of-function (LoF) variant in a testis-specific gene, C1orf185 (c.250C>T; p.Gln84Ter) and CCT6B (c.615-2A>G), respectively. Both variants are rare according to the gnomAD database and absent from our local control cohort (n = 445). To verify the implication of these candidate genes in NOA, we used the CRISPR/Cas9 system to invalidate the mouse orthologs 4930522H14Rik and Cct6b and produced two knockout (KO) mouse lines. Sperm and testis parameters of homozygous KO adult male mice were analyzed and compared with those of wild-type animals. We showed that homozygous KO males were fertile and displayed normal sperm parameters and a functional spermatogenesis. Overall, these results demonstrate that not all genes highly and specifically expressed in the testes are essential for spermatogenesis, and in particular, we conclude that bi-allelic variants of C1orf185 and CCT6B are most likely not to be involved in NOA and male fertility.


2021 ◽  
Author(s):  
Elisabeth Meyer ◽  
Roozbeh Dehghannasiri ◽  
Kaitlin Chaung ◽  
Julia Salzman

Post-transcriptional regulation of RNA processing (RNAP), including splicing and alternative polyadenylation (APA), controls eukaryotic gene function. Conservative estimates based on bulk tissue studies conclude that at least 50% of mammalian genes undergo APA. Single-cell RNA sequencing (scRNA-seq) could enable a near complete estimate of the extent, function, and regulation of these and other forms of RNA processing. Yet, statistical methods to detect regulated RNAP are limited in their detection power because they suffer from reliance on (a) incomplete annotations of 3' untranslated regions (3' UTRs), (b) peak calling heuristics, (c) analysis based on measurements collapsed over all cells in a cell type (pseudobulking), or (d) APA-specific detection. Here, we introduce ReadZS, a computationally-efficient, and annotation-free statistical approach to identify regulated RNAP, including but not limited to APA, in single cells. ReadZS rediscovers and substantially extends the scope of known cell type-specific RNAP in the human lung and during human spermatogenesis. The unique single-cell resolution and statistical properties of ReadZS enable discovery of new evolutionarily conserved, developmentally regulated RNAP and subpopulations of lung-resident macrophages, homogenous by gene expression alone.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Najmeh Salehi ◽  
Mohammad Hossein Karimi-Jafari ◽  
Mehdi Totonchi ◽  
Amir Amiri-Yekta

AbstractSpermatogenesis is a complex process of cellular division and differentiation that begins with spermatogonia stem cells and leads to functional spermatozoa production. However, many of the molecular mechanisms underlying this process remain unclear. Single-cell RNA sequencing (scRNA-seq) is used to sequence the entire transcriptome at the single-cell level to assess cell-to-cell variability. In this study, more than 33,000 testicular cells from different scRNA-seq datasets with normal spermatogenesis were integrated to identify single-cell heterogeneity on a more comprehensive scale. Clustering, cell type assignments, differential expressed genes and pseudotime analysis characterized 5 spermatogonia, 4 spermatocyte, and 4 spermatid cell types during the spermatogenesis process. The UTF1 and ID4 genes were introduced as the most specific markers that can differentiate two undifferentiated spermatogonia stem cell sub-cellules. The C7orf61 and TNP can differentiate two round spermatid sub-cellules. The topological analysis of the weighted gene co-expression network along with the integrated scRNA-seq data revealed some bridge genes between spermatogenesis’s main stages such as DNAJC5B, C1orf194, HSP90AB1, BST2, EEF1A1, CRISP2, PTMS, NFKBIA, CDKN3, and HLA-DRA. The importance of these key genes is confirmed by their role in male infertility in previous studies. It can be stated that, this integrated scRNA-seq of spermatogenic cells offers novel insights into cell-to-cell heterogeneity and suggests a list of key players with a pivotal role in male infertility from the fertile spermatogenesis datasets. These key functional genes can be introduced as candidates for filtering and prioritizing genotype-to-phenotype association in male infertility.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Julia Eve Olivieri ◽  
Roozbeh Dehghannasiri ◽  
Peter L Wang ◽  
SoRi Jang ◽  
Antoine de Morree ◽  
...  

The extent splicing is regulated at single-cell resolution has remained controversial due to both available data and methods to interpret it. We apply the SpliZ, a new statistical approach, to detect cell-type-specific splicing in >110K cells from 12 human tissues. Using 10x data for discovery, 9.1% of genes with computable SpliZ scores are cell-type-specifically spliced, including ubiquitously expressed genes MYL6 and RPS24. These results are validated with RNA FISH, single-cell PCR, and Smart-seq2. SpliZ analysis reveals 170 genes with regulated splicing during human spermatogenesis, including examples conserved in mouse and mouse lemur. The SpliZ allows model-based identification of subpopulations indistinguishable based on gene expression, illustrated by subpopulation-specific splicing of classical monocytes involving an ultraconserved exon in SAT1. Together, this analysis of differential splicing across multiple organs establishes that splicing is regulated cell-type-specifically.


2021 ◽  
Author(s):  
Najmeh Salehi ◽  
Mohammad Hossein Karimi-Jafari ◽  
Mehdi Totonchi ◽  
Amir Amiri-Yekta

Abstract Spermatogenesis is a complex process of cellular division and differentiation that begins with spermatogonia stem cells and leads to functional spermatozoa production. However, many of the molecular mechanisms underlying this process remain unclear. Single-cell RNA sequencing (scRNA-seq) is used to sequence the entire transcriptome at the single-cell level to assess cell-to-cell variability. Here, more than 33,000 testicular cells from five scRNA-seq datasets with normal spermatogenesis were integrated to identify single-cell heterogeneity on a more comprehensive scale. Clustering, cell type assignments, differential expressed genes and pseudotime analysis characterized 5 spermatogonia, 4 spermatocyte, and 4 spermatid cell types during the spermatogenesis process. The UTF1 and ID4 genes were introduced as most specific markers that can differentiate two undifferentiated spermatogonia stem cell sub-cellules, and C7orf61 and TNP, two round spermatid sub-cellules. The topological analysis of the weighted gene co-expression network along with the integrated scRNA-seq data revealed some bridge genes between spermatogenesis’s main stages such as DNAJC5B, C1orf194, HSP90AB1, BST2, EEF1A1, CRISP2, PTMS, NFKBIA, CDKN3, and HLA-DRA. The importance of these key genes is confirmed by their role in male infertility in the available studies. It can be stated that, this integrated scRNA-seq of spermatogenic cells offers novel insights into cell-to-cell heterogeneity and suggests a list of key players with a pivotal role in male infertility from the fertile spermatogenesis datasets. These key functional genes can be introduced as candidates for filtering and prioritizing of genotype-to-phenotype association in male infertility.


2021 ◽  
Author(s):  
Meghan Alice Robinson ◽  
Erin Bedford ◽  
Luke Witherspoon ◽  
Stephanie Willerth ◽  
Ryan Flannigan

Advances in cancer treatments have greatly improved pediatric cancer survival rates, leading to quality of life considerations and in particular fertility restoration. Accordingly, pre-pubertal patients have the option to cryopreserve testicular tissue for experimental restorative therapies, including in vitro spermatogenesis, wherein testicular tissue is engineered in vitro and spermatozoa are collected for in vitro fertilization (IVF). Current in vitro systems have been unable to reliably support the generation of spermatozoa from human testicular tissues, likely due to the inability for the dissociated testicular cells to recreate the native architecture of testicular tissue found in vivo. Recent advances in 3-D bioprinting can place cells into geometries at fine resolutions comparable to microarchitectures found in native tissues, and therefore hold promise as a tool for the development of a biomimetic in vitro system for human spermatogenesis. This study assessed the utility of bioprinting technology to recreate the precise architecture of testicular tissue and corresponding spermatogenesis for the first time. We printed testicular cell-laden hollow microtubules at similar resolutions to seminiferous tubules, and compared the results to testicular organoids. We show that the human testicular cells retain their viability and functionality post-printing, and illustrate an intrinsic ability to reorganize into their native cytoarchitecture. This study provides a proof of concept for the use of 3-D bioprinting technology as a tool to create biomimetic human testicular tissues.


2021 ◽  
Author(s):  
Kei Fukuda ◽  
Yoshinori Makino ◽  
Satoru Kaneko ◽  
Yuki Okada ◽  
Kenji Ichiyanagi ◽  
...  

DNA methylation, repressive histone modifications, and PIWI-interacting RNAs are essential for controlling retroelement silencing in mammalian germ lines. Dysregulation of retroelement silencing is associated with male sterility. Although retroelement silencing mechanisms have been extensively studied in mouse germ cells, little progress has been made in humans. Here, we show that the Krüppel-associated box domain zinc finger proteins (KRAB-ZFPs) are associated with DNA methylation of retroelements in human primordial germ cells (hPGCs), and hominoid-specific retroelement SINE-VNTR-Alus (SVA) is subjected to transcription-directed de novo DNA methylation during human spermatogenesis. Furthermore, we show that the degree of de novo DNA methylation in SVAs varies among human individuals, which confers a significant inter-individual epigenetic variation in sperm. Collectively, our results provide potential molecular mechanisms for the regulation of retroelements in human male germ cells.


2021 ◽  
Vol 12 (5) ◽  
Author(s):  
Qiang Liu ◽  
Qianying Guo ◽  
Wei Guo ◽  
Shi Song ◽  
Nan Wang ◽  
...  

AbstractThe spermatogenesis process is complex and delicate, and any error in a step may cause spermatogenesis arrest and even male infertility. According to our previous transcriptomic data, CEP70 is highly expressed throughout various stages of human spermatogenesis, especially during the meiosis and deformation stages. CEP70 is present in sperm tails and that it exists in centrosomes as revealed by human centrosome proteomics. However, the specific mechanism of this protein in spermatogenesis is still unknown. In this study, we found a heterozygous site of the same mutation on CEP70 through mutation screening of patients with clinical azoospermia. To further verify, we deleted CEP70 in mice and found that it caused abnormal spermatogenesis, leading to male sterility. We found that the knockout of CEP70 did not affect the prophase of meiosis I, but led to male germ-cell apoptosis and abnormal spermiogenesis. By transmission electron microscopy (TEM) and scanning electron microscopy (SEM) analysis, we found that the deletion of CEP70 resulted in the abnormal formation of flagella and acrosomes during spermiogenesis. Tandem mass tag (TMT)-labeled quantitative proteomic analysis revealed that the absence of CEP70 led to a significant decrease in the proteins associated with the formation of the flagella, head, and acrosome of sperm, and the microtubule cytoskeleton. Taken together, our results show that CEP70 is essential for acrosome biogenesis and flagella formation during spermiogenesis.


Sign in / Sign up

Export Citation Format

Share Document