volume imaging
Recently Published Documents


TOTAL DOCUMENTS

312
(FIVE YEARS 63)

H-INDEX

33
(FIVE YEARS 3)

2022 ◽  
Author(s):  
Wei-Chun Tang ◽  
Yen-Ting Liu ◽  
Cheng-Han Yeh ◽  
Yi-Ling Lin ◽  
Yu-Chun Lin ◽  
...  

Lattice lightsheet microscopy (LLSM) is modified with the aim of manipulating cellular behavior with subcellular resolution through three-dimensional (3D) optogenetic activation. In this study, we report a straightforward implementation of the activation source in LLSM in which the stimulating light can be generated by changing the spatial light modulator (SLM) patterns and the annual masks. As a result, a Bessel beam as a stimulation source is integrated into the LLSM without changing the optical configuration, achieving high spatiotemporal activation. We show that the energy power required for optogenetic reactions is lower than 1 nW (24 mW/cm2) and membrane ruffling can be activated at different locations within a cell with subcellular resolution. We also demonstrate guided cell migration using optogenetic stimulation for up to 6 h with 463 volume imaging without noticeable damage to cells.


2021 ◽  
Vol 9 (4) ◽  
pp. 8133-8138
Author(s):  
Mar N B ◽  
◽  
Seye Ch ◽  
Yacouba Garba K ◽  
Niang I ◽  
...  

Osteology is a fundamental discipline, its classical teaching becomes difficult because of plethora of students and shortage of bony parts. It’s in this context that we have made, from 3D volume imaging, a modeling of the rib cage as a test using a software for post-treatment of CT images in order to propose a pedagogical tool for studying thorax’s skeletal and adding descriptions with the help of classical works. This was a prospective study involving 27 patients aged between 35 and 45 years. The scanners used were HITACHI ECLOS 16 cuts. Once the CT scan was selected, the DICOM data was transmitted to the post-processing console. The images were processed on the console "Aquarius Intuition Edition Version 4. 4. 7. 855113", for one patient we used Veiwer Osirix 10.6.8 Mac. All bones have been dynamically described thanks to the volume rendering. We thus obtained volumetric reconstructions of three-dimensional CT images of the different bone structures superimposed on those taught in classical anatomy practical work. We obtained a scenario of practical work in the form of a slide show that the teacher can use for works with or without model and even remotely. The virtual reality obtained with the 3D reconstructions of CT scans of the rib cage is a tool for self-learning of osteology for students but also a way for teachers to do practical work without having to use models, and even at a distance. KEY WORDS: 3D imaging, Teaching, Tomodensitometry, Osteology.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Adam R. Patel ◽  
Apoorv Ranjan ◽  
Xingxing Wang ◽  
Mikhail N. Slipchenko ◽  
Mikhail N. Shneider ◽  
...  

AbstractThe total number of electrons in a classical microplasma can be non-intrusively measured through elastic in-phase coherent microwave scattering (CMS). Here, we establish a theoretical basis for the CMS diagnostic technique with an emphasis on Thomson and collisional scattering in short, thin unmagnetized plasma media. Experimental validation of the diagnostic is subsequently performed via linearly polarized, variable frequency (10.5–12 GHz) microwave scattering off laser induced 1–760 Torr air-based microplasmas (287.5 nm O2 resonant photoionization by ~ 5 ns, < 3 mJ pulses) with diverse ionization and collisional features. Namely, conducted studies include a verification of short-dipole-like radiation behavior, plasma volume imaging via ICCD photography, and measurements of relative phases, total scattering cross-sections, and total number of electrons $$N_{e}$$ N e in the generated plasma filaments following absolute calibration using a dielectric scattering sample. Findings of the paper suggest an ideality of CMS in the Thomson “free-electron” regime—where a detailed knowledge of plasma and collisional properties (which are often difficult to accurately characterize due to the potential influence of inhomogeneities, local temperatures and densities, present species, and so on) is unnecessary to extract $$N_{e}$$ N e from the scattered signal. The Thomson scattering regime of microwaves is further experimentally verified via measurements of the relative phase between the incident electric field and electron displacement.


Author(s):  
Paul David Griffiths ◽  
Deborah Jarvis ◽  
Daniel J Connolly ◽  
Cara Mooney ◽  
Nicholas Embleton ◽  
...  

BackgroundFetal ventriculomegaly is the the most common intracranial abnormality detected antenatally. When ventriculomegaly is mild and the only, isolated, abnormality detected (isolated mild ventriculomegaly (IMVM)) the prognosis is generally considered to be good. We aim to determine if there are features on in utero MRI (iuMRI) that can identify fetuses with IMVM who have lower risks of abnormal neurodevelopment outcome.MethodsWe studied cases recruited into the MRI to enhance the diagnosis of fetal developmental brain abnormalities in utero (MERIDIAN) study, specifically those with: confirmed IMVM, 3D volume imaging of the fetal brain and neurodevelopmental outcomes at 3 years. We explored the influence of sex of the fetus, laterality of the ventriculomegaly and intracranial compartmental volumes in relation to neurodevelopmental outcome.FindingsForty-two fetuses met the criteria (33 male and 9 female). There was no obvious correlation between fetal sex and the risk of poor neurodevelopmental outcome. Unilateral IMVM was present in 23 fetuses and bilateral IMVM in 19 fetuses. All fetuses with unilateral IMVM had normal neurodevelopmental outcomes, while only 12/19 with bilateral IMVM had normal neurodevelopmental outcomes. There was no obvious correlation between measure of intracranial volumes and risk of abnormal developmental outcomes.InterpretationThe most important finding is the very high chance of a good neurodevelopmental outcome observed in fetuses with unilateral IMVM, which is a potentially important finding for antenatal counselling. There does not appear to be a link between the volume of the ventricular system or brain volume and the risk of poor neurodevelopmental outcome.


2021 ◽  
Vol 15 ◽  
Author(s):  
Shijie Liu ◽  
Qing Huang ◽  
Tingwei Quan ◽  
Shaoqun Zeng ◽  
Hongwei Li

3D volume imaging has been regarded as a basic tool to explore the organization and function of the neuronal system. Foreground estimation from neuronal image is essential in the quantification and analysis of neuronal image such as soma counting, neurite tracing and neuron reconstruction. However, the complexity of neuronal structure itself and differences in the imaging procedure, including different optical systems and biological labeling methods, result in various and complex neuronal images, which greatly challenge foreground estimation from neuronal image. In this study, we propose a robust sparse-smooth model (RSSM) to separate the foreground and the background of neuronal image. The model combines the different smoothness levels of the foreground and the background, and the sparsity of the foreground. These prior constraints together contribute to the robustness of foreground estimation from a variety of neuronal images. We demonstrate the proposed RSSM method could promote some best available tools to trace neurites or locate somas from neuronal images with their default parameters, and the quantified results are similar or superior to the results that generated from the original images. The proposed method is proved to be robust in the foreground estimation from different neuronal images, and helps to improve the usability of current quantitative tools on various neuronal images with several applications.


2021 ◽  
Vol 6 (66) ◽  
pp. 3500
Author(s):  
Tobias Wood ◽  
Emil Ljungberg ◽  
Florian Wiesinger
Keyword(s):  

Author(s):  
Omar Hamid ◽  
Daniel J. Quinlan ◽  
Rudolf Seemann ◽  
Haidar Hassan

Life ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 842
Author(s):  
Patrick Phillips ◽  
James M. Parkhurst ◽  
Ilias Kounatidis ◽  
Chidinma Okolo ◽  
Thomas M. Fish ◽  
...  

Chlamydiae are strict intracellular pathogens residing within a specialised membrane-bound compartment called the inclusion. Therefore, each infected cell can, be considered as a single entity where bacteria form a community within the inclusion. It remains unclear as to how the population of bacteria within the inclusion influences individual bacterium. The life cycle of Chlamydia involves transitioning between the invasive elementary bodies (EBs) and replicative reticulate bodies (RBs). We have used cryo-soft X-ray tomography to observe individual inclusions, an approach that combines 40 nm spatial resolution and large volume imaging (up to 16 µm). Using semi-automated segmentation pipeline, we considered each inclusion as an individual bacterial niche. Within each inclusion, we identifyed and classified different forms of the bacteria and confirmed the recent finding that RBs have a variety of volumes (small, large and abnormal). We demonstrate that the proportions of these different RB forms depend on the bacterial concentration in the inclusion. We conclude that each inclusion operates as an autonomous community that influences the characteristics of individual bacteria within the inclusion.


Sign in / Sign up

Export Citation Format

Share Document