supersymmetry theory
Recently Published Documents


TOTAL DOCUMENTS

13
(FIVE YEARS 1)

H-INDEX

1
(FIVE YEARS 0)

Supersymmetry theory predicts that every particle in the standard model has a superpartner particle with a different mass. The Classification Problem of Supersymmetric Particles in High-Energy represents a major challenge for physicists. This paper aims to resolve the Big data Classification Problem in the area of Supersymmetric Particles using the Apache Spark Environment with the "MLlib" library. This contribution attempts to explore the performance of Machine Learning methods in the context of large data such as a "Susy" dataset, collected from the UCI Machine Learning repository. In this work, the performance is measured using three metrics: Accuracy, Area Under Curve (AUC), and training Computation Time (CT). The results are promising and show that the Gradient Boosted Tree (GBT) classifier achieves a high accuracy score (79%). While the Logistic Regression (LR) algorithm realizes a well AUC score (86%).


2005 ◽  
Vol 201 ◽  
pp. 312-321
Author(s):  
Peter F. Smith

There is increasing evidence that the majority of dark matter is non-baryonic. Principal candidates are weakly interacting massive particles (WIMPS), axions, and neutrinos. There has been increasing effort on sensitive WIMP searches, motivated in particular by supersymmetry theory, which predicts a stable neutral particle in the mass range 10-1000 GeV. Interactions of these with normal matter would produce low energy nuclear recoils which could be observed by underground detectors capable of discriminating these from background. Current experimental progress is summarised, together with plans for more sensitive experiments. These include gaseous detectors with directional sensitivity, offering the prospect of a ‘dark matter telescope’ which would provide information on the dark matter velocity distribution. Axions could be detected by conversion to microwave photons, and experimental sensitivity is approaching the theoretically-required levels. Relic neutrinos could also form a component of the dark matter if any has a cosmologically significant mass, and the latter could be checked with a new detector able to detect the higher neutrino flavours from a Galactic supernova burst. More distant future possibilities are outlined for direct detection of relic neutrinos by coherent scattering.


2004 ◽  
Vol 69 (2) ◽  
Author(s):  
Alexander Olemskoi ◽  
Ivan Krakovsky ◽  
Alexey Savelyev

Sign in / Sign up

Export Citation Format

Share Document