energy quantum
Recently Published Documents


TOTAL DOCUMENTS

135
(FIVE YEARS 28)

H-INDEX

21
(FIVE YEARS 2)

Universe ◽  
2022 ◽  
Vol 8 (1) ◽  
pp. 50
Author(s):  
Ana Alonso-Serrano ◽  
Marek Liška

This work is based on the formalism developed in the study of the thermodynamics of spacetime used to derive Einstein equations from the proportionality of entropy within an area. When low-energy quantum gravity effects are considered, an extra logarithmic term in the area is added to the entropy expression. Here, we present the derivation of the quantum modified gravitational dynamics from this modified entropy expression and discuss its main features. Furthermore, we outline the application of the modified dynamics to cosmology, suggesting the replacement of the Big Bang singularity with a regular bounce.


2022 ◽  
Vol 258 ◽  
pp. 07006
Author(s):  
Catalina Curceanu ◽  
Marco Miliucci ◽  
Massimiliano Bazzi ◽  
Damir Bosnar ◽  
Mario Bragadireanu ◽  
...  

The X-ray spectroscopy measurements of light kaonic atoms’ deexcitation towards the fundamental level provide unique information on the low-energy Quantum ChromoDynamics (QCD) in the strangeness sector, being a direct probe of the kaon/nucleon interaction at threshold, unobtainable through the scattering experiments. In this framework, the SIDDHARTA-2 collaboration is going to perform the first kaonic deuterium 2p → 1s transition measurement at the DAΦNE collider of Istituto Nazionale di Fisica Nucleare – Laboratori Nazionali di Frascati. Combining this measurement with the kaonic hydrogen one performed by SIDDHARTA in 2009 it will be possible to obtain, in a model-independent way, the isospin-dependent antikaon-nucleon scattering lengths. The paper introduces the SIDDHARTA-2 setup, an upgraded version with respect to the one used for the kaonic hydrogen measurement, dedicated to the ambitious kaonic deuterium measurement, together with the preliminary results obtained during the kaonic helium run, preparatory for the SIDDHARTA-2 data taking campaign.


Entropy ◽  
2021 ◽  
Vol 23 (10) ◽  
pp. 1350
Author(s):  
Ferenc Márkus ◽  
Katalin Gambár

The discovery of quantized electric conductance by the group of van Wees in 1988 was a major breakthrough in physics. A decade later, the group of Schwab has proven the existence of quantized thermal conductance. Advancing from these and many other aspects of the quantized conductances in other phenomena of nature, the concept of quantized entropy current can be established and it eases the description of a transferred quantized energy package. This might yield a universal transport behavior of the microscopic world. During the transfer of a single energy quantum, hν, between two neighboring domains, the minimum entropy increment is calculated. It is pointed out that the possible existence of the minimal entropy transfer can be formulated. Moreover, as a new result, it is proved that this minimal entropy transfer principle is equivalent to the Lagrangian description of thermodynamics.


2021 ◽  
Author(s):  
K.H.K. Geerasee Wijesuriya

At this moment, scientists don’t have any significant explanation to explain ‘why there are much matter particles than anti-matter particles’ in the universe. But with this research, it is going to provide an explanation for that.An attempt of this research is to provide detailed innovative arguments regarding the real nature of supermassive black holes also. Here this is intending to explain why, the contribution to the accelerating expansion of the universe by the quantum vacuum is much bit than the contribution by other matters in the universe.Scientists have confused on why the energy of the zero-point energy (quantum vacuum) state, does not contribute to the cosmological vacuum energy (cosmological constant) much. The goal of this research is to investigate a solution to that particular problem also. This will explain why there is a difference between the observed energy of a satellite and the theoretically calculated energy of a satellite, which is orbiting around the Earth. This research will argue regarding whether dark matter is responsible for differences in observed and theoretical speed of stars revolving around the center of Galaxies.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Alexander Y. Yosifov

The current work is a review, dedicated to the study of semiclassical aspects of black holes. We begin by briefly looking at the main statements of general relativity. We then consider the Schwarzschild, Kerr, and Reissner-Nordstrom black hole solutions and discuss their geometrical properties. Later, the thermodynamic nature of black holes is established. In light of this, we formulate the information loss problem and present the most promising approaches for addressing it with emphasis on introducing low-energy quantum corrections to the classical general relativity picture. Finally, in the context of multimessenger astronomy, we look at naked singularities as possible gravitational collapse endstates and their role in the unitarity of quantum mechanics and discuss their observational prospects.


2020 ◽  
pp. 2150027
Author(s):  
J. Sadeghi ◽  
E. Naghd Mezerji ◽  
S. Noori Gashti

In this paper, we use corrected [Formula: see text] gravitational model which is a polynomial function with a logarithmic term. We employ the slow-roll conditions and obtain the number of cosmological parameters. This helps us to verify the swampland conjectures which guarantees validation of low energy quantum field theory. The obtained results show that the corresponding model is consistent with the swampland conjectures. Also, the upper and lower limits of the parameter [Formula: see text] are, respectively, 0.15 and 0.0033. Finally, by using scalar spectrum index [Formula: see text] and tensor-to-scalar ratio [Formula: see text] relations and comparing with the Planck 2018 data, we obtain the coefficients [Formula: see text], [Formula: see text] and [Formula: see text]. Also, the corresponding results are constructed by several figures, literature and also Planck 2018 data.


2020 ◽  
Vol 2020 (12) ◽  
Author(s):  
A. Alonso-Serrano ◽  
M. Liška

Abstract In this work we derive general quantum phenomenological equations of gravitational dynamics and analyse its features. The derivation uses the formalism developed in thermodynamics of spacetime and introduces low energy quantum gravity modifications to it. Quantum gravity effects are considered via modification of Bekenstein entropy by an extra logarithmic term in the area. This modification is predicted by several approaches to quantum gravity, including loop quantum gravity, string theory, AdS/CFT correspondence and generalised uncertainty principle phenomenology, giving our result a general character. The derived equations generalise classical equations of motion of unimodular gravity, instead of the ones of general relativity, and they contain at most second derivatives of the metric. We provide two independent derivations of the equations based on thermodynamics of local causal diamonds. First one uses Jacobson's maximal vacuum entanglement hypothesis, the second one Clausius entropy flux. Furthermore, we consider questions of diffeomorphism and local Lorentz invariance of the resulting dynamics and discuss its application to a simple cosmological model, finding a resolution of the classical singularity.


2020 ◽  
Author(s):  
Shuming Wen

Abstract The theoretical calculation of quantum mechanics has been accurately verified by experiments, but Copenhagen interpretation with probability is still controversial. To find the source of the probability, we revised the definition of the energy quantum and reconstructed the wave function of the physical particle. Here, we found that the energy quantum ê is 6.62606896 ×10-34J instead of hν as proposed by Planck. Additionally, the value of the quality quantum ô is 7.372496 × 10-51 kg. This discontinuity of energy leads to a periodic non-uniform spatial distribution of the particles that transmit energy. A quantum objective system (QOS) consists of many physical particles whose wave function is the superposition of the wave functions of all physical particles. The probability of quantum mechanics originates from the distribution rate of the particles in a state in the QOS per unit volume at time t and near position r. Based on the revision of the energy quantum assumption and the origin of the probability, we proposed new certainty and uncertainty relationships, explained the physical mechanism of wave-function collapse and the quantum tunnelling effect, derived the quantum theoretical expression of double-slit and single-slit experiments.


Sign in / Sign up

Export Citation Format

Share Document