human nerve
Recently Published Documents


TOTAL DOCUMENTS

254
(FIVE YEARS 34)

H-INDEX

40
(FIVE YEARS 4)

2021 ◽  
Author(s):  
Monica J Chau ◽  
Jorge E Quintero ◽  
Eric Blalock ◽  
Christopher Samaan ◽  
Greg Gerhardt ◽  
...  

Regeneration after severe peripheral nerve injury is often poor. Knowledge of human nerve regeneration and the growth microenvironment is greatly lacking. We aimed to identify the regenerative proteins in human peripheral nerve by comparing the proteome before and after a transection injury. In a unique study design, we collected from the same participants, samples from naïve and degenerating sural nerve. Naïve and degenerating (two weeks after injury) samples were analyzed using mass spectrometry and immunoassays. Using a correlation matrix, we found significantly altered levels following the nerve injury. Mass spectrometry revealed that post-injury samples had 672 proteins significantly upregulated and 661 significantly downregulated compared to naïve samples (q < 0.05, |FC| > 2). We used Gene Ontology pathways to highlight groups of proteins that were significantly upregulated or downregulated with injury-induced degeneration and regeneration. Significant protein changes in key pathways were identified including growth factor levels, Schwann cell de-differentiation, myelination downregulation, epithelial-mesenchymal transition, and axonal regeneration pathways. Having proteome signatures of human peripheral nerves of both the uninjured and the degenerating/regenerating state may serve as biomarkers to aid in the future development of repair strategies and in monitoring neural tissue regeneration.


eNeuro ◽  
2021 ◽  
pp. ENEURO.0388-21.2021
Author(s):  
Marina Fortea ◽  
Piyush Jain ◽  
Ingrid Demedts ◽  
Jan Tack ◽  
Tim Vanuytsel ◽  
...  

2021 ◽  
Vol 8 (10) ◽  
pp. 132
Author(s):  
Renyi Sun ◽  
Tanghong Jia ◽  
Bradley Dart ◽  
Sunaina Shrestha ◽  
Morgan Bretches ◽  
...  

We have recently identified a population of cells within the peripheral nerves of adult rodent animals (mice and rats) that can respond to Bone Morphogenetic Protein-2 (BMP-2) exposure or physical injury to rapidly proliferate. More importantly, these cells exhibited embryonic differentiation potentials that could be induced into osteoblastic and endothelial cells in vitro. The current study examined human nerve specimens to compare and characterize the cells after BMP-2 stimulation. Fresh pieces of human nerve tissue were minced and treated with either BMP-2 (750 ng/mL) or a PBS vehicle for 12 h at 37 °C, before being digested in 0.2% collagenase and 0.05% trypsin-EDTA. Isolated cells were cultured in a restrictive stem cell medium. Significantly more cells were obtained from the nerve pieces with the BMP-2 treatment in comparison with the PBS vehicle controls. Cell colonies started to form at Day 3. Expressions of the four transcription factors, namely, Klf4, c-Myc, Sox2, and Oct4, were confirmed at both the transcriptional and translational levels. The cells can be maintained in the stem cell culture medium for at least 6 weeks without changing their morphology. When the cells were transferred to a fibroblast growth medium, dispersed spindle-shaped motile cells were noted and became fibroblast activated protein-α (FAP) positive with immunocytochemistry staining. The data suggest that human peripheral nerve tissue also contains a population of cells that can respond to BMP-2 and express Klf4, Sox2, cMyc, and Oct4—the four transcription factors driving cell pluripotency. These cells are able to differentiate into FAP-positive fibroblasts. In summary, in human peripheral nerves also reside a population of quiescent cells with pluripotency potential that may be the same cells as rodent nerve-derived adult stem (NEDAPS) cells. It is proposed that these cells are possibly at the core of a previously unknown natural mechanism for healing an injury.


2021 ◽  
Vol 22 (18) ◽  
pp. 10014
Author(s):  
Pamela Rosso ◽  
Elena Fico ◽  
Louise A. Mesentier-Louro ◽  
Viviana Triaca ◽  
Alessandro Lambiase ◽  
...  

Eye-drop recombinant human nerve growth factor (ed-rhNGF) has proved to recover the retina and optic nerve damage in animal models, including the unilateral optic nerve crush (ONC), and to improve visual acuity in humans. These data, associated with evidence that ed-rhNGF stimulates the brain derived neurotrophic factor (BDNF) in retina and cortex, suggests that NGF might exert retino-fugal effects by affecting BDNF and its receptor TrkB. To address these questions, their expression and relationship with the GABAergic and glutamatergic transmission markers, GAD65 and GAD67, vesicular inhibitory amino acid transporter (VGAT), and vesicular glutamate transporters 1 and 2 (VGLUT-1 and VGLUT-2) were investigated in adult ONC rats contralateral and ipsilateral visual cortex (VCx). Ed-rhNGF recovers the ONC-induced alteration of GABAergic and glutamatergic markers in contralateral VCx, induces an upregulation of TrkB, which is positively correlated with BDNF precursor (proBDNF) decrease in both VCx sides, and strongly enhances TrkB+ cell soma and neuronal endings surrounded by GAD65 immuno-reactive afferents. These findings contribute to enlarging the knowledge on the mechanism of actions and cellular targets of exogenously administrated NGF, and suggest that ed-rhNGF might act by potentiating the activity-dependent TrkB expression in GAD+ cells in VCx following retina damage and/or ONC.


Cornea ◽  
2021 ◽  
Vol Publish Ahead of Print ◽  
Author(s):  
Sana Qureshi ◽  
Tanner J. Ferguson ◽  
Mira Lim ◽  
Jae Young You ◽  
Jeffrey M. Goshe ◽  
...  

Author(s):  
Isabel Zucal ◽  
Daniela Mihic-Probst ◽  
Anna-Lisa Pignet ◽  
Maurizio Calcagni ◽  
Pietro Giovanoli ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Patrick Dömer ◽  
Janine Kayal ◽  
Ulrike Janssen-Bienhold ◽  
Bettina Kewitz ◽  
Thomas Kretschmer ◽  
...  

AbstractEndothelial cells (ECs) have gained an increased scientific focus since they were reported to provide guidance for Schwann cells and subsequently following axons after nerve injuries. However, previous protocols for the isolation of nerve-derived ECs from human nerves are ineffective regarding time and yield. Therefore, we established a novel and efficient protocol for the isolation of ECs from human peripheral nerves by means of immunomagnetic CD31-antibody conjugated Dynabeads and assessed the purity of the isolated cells. The easy-to-follow and time-effective isolation method allows the isolation of > 95% pure ECs. The isolated ECs were shown to express highly specific EC marker proteins and revealed functional properties by formation of CD31 and VE-cadherin positive adherens junctions, as well as ZO-1 positive tight-junctions. Moreover, the formation of capillary EC-tubes was observed in-vitro. The novel protocol for the isolation of human nerve-derived ECs allows and simplifies the usage of ECs in research of the human blood-nerve-barrier and peripheral nerve regeneration. Additionally, a potential experimental application of patient-derived nerve ECs in the in-vitro vascularization of artificial nerve grafts is feasible.


Sign in / Sign up

Export Citation Format

Share Document