sample recognition
Recently Published Documents


TOTAL DOCUMENTS

15
(FIVE YEARS 7)

H-INDEX

3
(FIVE YEARS 2)

Doklady BGUIR ◽  
2021 ◽  
Vol 19 (7) ◽  
pp. 13-21
Author(s):  
V. S. Mukha

At present, neural networks are increasingly used to solve many problems instead of traditional methods for solving them. This involves comparing the neural network and the traditional method for specific tasks. In this paper, computer modeling of the Bayesian decision rule and the probabilistic neural network is carried out in order to compare their operational characteristics for recognizing Gaussian patterns. Recognition of four and six images (classes) with the number of features from 1 to 6 was simulated in cases where the images are well and poorly separated. The sizes of the training and test samples are chosen quiet big: 500 implementations for each image. Such characteristics as training time of the decision rule, recognition time on the test sample, recognition reliability on the test sample, recognition reliability on the training sample were analyzed. In framework of these conditions it was found that the recognition reliability on the test sample in the case of well separated patterns and with any number of the instances is close to 100 percent for both decision rules. The neural network loses 0,1–16 percent to Bayesian decision rule in the recognition reliability on the test sample for poorly separated patterns. The training time of the neural network exceeds the training time of the Bayesian decision rule in 4–5 times and the recognition time – in 4–6 times. As a result, there are no obvious advantages of the probabilistic neural network over the Bayesian decision rule in the problem of Gaussian pattern recognition. The existing generalization of the Bayesian decision rule described in the article is an alternative to the neural network for the case of non-Gaussian patterns.


2021 ◽  
Vol 11 (21) ◽  
pp. 9938
Author(s):  
Kun Shao ◽  
Yu Zhang ◽  
Junan Yang ◽  
Hui Liu

Deep learning models are vulnerable to backdoor attacks. The success rate of textual backdoor attacks based on data poisoning in existing research is as high as 100%. In order to enhance the natural language processing model’s defense against backdoor attacks, we propose a textual backdoor defense method via poisoned sample recognition. Our method consists of two parts: the first step is to add a controlled noise layer after the model embedding layer, and to train a preliminary model with incomplete or no backdoor embedding, which reduces the effectiveness of poisoned samples. Then, we use the model to initially identify the poisoned samples in the training set so as to narrow the search range of the poisoned samples. The second step uses all the training data to train an infection model embedded in the backdoor, which is used to reclassify the samples selected in the first step, and finally identify the poisoned samples. Through detailed experiments, we have proved that our defense method can effectively defend against a variety of backdoor attacks (character-level, word-level and sentence-level backdoor attacks), and the experimental effect is better than the baseline method. For the BERT model trained by the IMDB dataset, this method can even reduce the success rate of word-level backdoor attacks to 0%.


2021 ◽  
Vol 2 (2 (110)) ◽  
pp. 23-31
Author(s):  
Gulnar Kim ◽  
Alexandr Demyanenko ◽  
Alexey Savostin ◽  
Kainizhamal Iklassova

This paper considers the process of developing a method to recognize the causes of plant growth deviations from normal using the advancements in artificial intelligence. The medicinal plant Aloe arborescens L. was chosen as the object of this research given that this plant had been for decades one of the best-selling new products in the world. Aloe arborescens L. is famous for its medicinal properties used in medicine, cosmetology, and even the food industry. Diagnosing the abnormalities in the plant development in a timely and accurate manner plays an important role in preventing the loss of crop production yields. The current study has built a method for recognizing the causes of abnormalities in the development of Aloe arborescens L. caused by a lack of watering or lighting, based on the use of transfer training of the VGG-16 convolutional neural network (United Kingdom). A given architecture is aimed at recognizing objects in images, which is the main reason for using it to achieve the goal set. The analysis of the quality metrics of the proposed image classification process by specified classes has revealed high recognition reliability (for a normally developing plant, 91 %; for a plant without proper watering, 89 %; and for a plant without proper lighting, 83 %). The analysis of the validity of test sample recognition has demonstrated a similar validity of the plant's classification to one of three classes: 92.6 %; 87.5 %; and 85.5 %, respectively. The results reported here make it possible to supplement the automated systems that control the mode parameters of hydroponic installations by the world's major producers with the main feedback on the deviation of the plant's development from the specified values


2021 ◽  
Vol 271 ◽  
pp. 01039
Author(s):  
Dongsheng Ji ◽  
Yanzhong Zhao ◽  
Zhujun Zhang ◽  
Qianchuan Zhao

In view of the large demand for new coronary pneumonia covid19 image recognition samples, the recognition accuracy is not ideal. In this paper, a new coronary pneumonia positive image recognition method proposed based on small sample recognition. First, the CT image pictures are preprocessed, and the pictures are converted into the picture formats which are required for transfer learning. Secondly, small-sample image enhancement and extension are performed on the transformed image, such as staggered transformation, random rotation and translation, etc.. Then, multiple migration models are used to extract features and then perform feature fusion. Finally,the model is adjusted by fine-tuning. Then train the model to obtain experimental results. The experimental results show that our method has excellent recognition performance in the recognition of new coronary pneumonia images, even with only a small number of CT image samples.


2020 ◽  
Author(s):  
dongshen ji ◽  
yanzhong zhao ◽  
zhujun zhang ◽  
qianchuan zhao

In view of the large demand for new coronary pneumonia covid19 image recognition samples,the recognition accuracy is not ideal.In this paper,a new coronary pneumonia positive image recognition method proposed based on small sample recognition. First, the CT image pictures are preprocessed, and the pictures are converted into the picture formats which are required for transfer learning. Secondly, perform small-sample image enhancement and expansion on the converted picture, such as miscut transformation, random rotation and translation, etc.. Then, multiple migration models are used to extract features and then perform feature fusion. Finally,the model is adjusted by fine-tuning.Then train the model to obtain experimental results. The experimental results show that our method has excellent recognition performance in the recognition of new coronary pneumonia images,even with only a small number of CT image samples.


2020 ◽  
Vol 17 (6) ◽  
pp. 1008-1012 ◽  
Author(s):  
Fan Zhang ◽  
Yunchong Wang ◽  
Jun Ni ◽  
Yongsheng Zhou ◽  
Wei Hu

2019 ◽  
Vol 55 (32) ◽  
pp. 4623-4626 ◽  
Author(s):  
Caroline Yumi Nakiri Nicoliche ◽  
Gabriel Floriano Costa ◽  
Angelo Luiz Gobbi ◽  
Flavio Makoto Shimizu ◽  
Renato Sousa Lima

A new concept of pattern sensors based on ready-to-use sensing probes has been designed towards low-cost and rapid sample recognition applications.


Sign in / Sign up

Export Citation Format

Share Document