dressing materials
Recently Published Documents


TOTAL DOCUMENTS

257
(FIVE YEARS 93)

H-INDEX

27
(FIVE YEARS 8)

Nanomaterials ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 6
Author(s):  
Mingchao Sun ◽  
Shaojuan Chen ◽  
Peixue Ling ◽  
Jianwei Ma ◽  
Shaohua Wu

Electrospun nanofiber mats have attracted intense attention as advanced wound dressing materials. The objective of this study was to fabricate methacrylated gelatin (MeGel)/poly(L-lactic acid) (PLLA) hybrid nanofiber mats with an extracellular matrix (ECM) mimicking nanofibrous structure and hydrogel-like properties for potential use as wound dressing materials. MeGel was first synthesized via the methacryloyl substitution of gelatin (Gel), a series of MeGel and PLLA blends with various mass ratios were electrospun into nanofiber mats, and a UV crosslinking process was subsequently utilized to stabilize the MeGel components in the nanofibers. All the as-crosslinked nanofiber mats exhibited smooth and bead-free fiber morphologies. The MeGel-containing and crosslinked nanofiber mats presented significantly improved hydrophilic properties (water contact angle = 0°; 100% wettability) compared to the pure PLLA nanofiber mats (~127°). The swelling ratio of crosslinked nanofiber mats notably increased with the increase of MeGel (143.6 ± 7.4% for PLLA mats vs. 875.0 ± 17.1% for crosslinked 1:1 MeGel/PLLA mats vs. 1135.2 ± 16.0% for crosslinked MeGel mats). The UV crosslinking process was demonstrated to significantly improve the structural stability and mechanical properties of MeGel/PLLA nanofiber mats. The Young’s modulus and ultimate strength of the crosslinked nanofiber mats were demonstrated to obviously decrease when more MeGel was introduced in both dry and wet conditions. The biological tests showed that all the crosslinked nanofiber mats presented great biocompatibility, but the crosslinked nanofiber mats with more MeGel were able to notably promote the attachment, growth, and proliferation of human dermal fibroblasts. Overall, this study demonstrates that our MeGel/PLLA blend nanofiber mats are attractive candidates for wound dressing material research and application.


2021 ◽  
Vol 1 (1) ◽  
pp. 80-103
Author(s):  
Aishwarya Gangwar ◽  
Parveen Kumar ◽  
Ranjit Singh ◽  
Preeti Kush

Skin and soft tissue infections (SSTIs) have increased problematically in hospital and ambulatory settings due to the poor immunity of hosts and multidrug-resistant pathogens. Mupirocin (MUP), a global topical antibiotic, is used for the treatment of SSTIs caused by various pathogens due to its unique mechanism of action. However, the therapeutic efficiency of MUP is hampered due to the protein binding and drug resistance caused by frequent use. A combined report covering the various aspects of MUP, such as the synthesis of the novel formulation, loading of the drug, and application against various skin infections, is missing. This comprehensive review focuses on various novel drug delivery strategies such as composite biomaterials/scaffold, hydrogel dressings, liposomes, liposomal hydrogel, microparticles/microspheres, microsponges, nanocapsules, nanofibers, silicone-based adhesive patches, and topical sprays. The therapeutic effect of the MUP can be synergized by combining with other agents and using novel strategies. The objective is to enhance patient compliance, decrease the resistance, magnify the delivery of MUP, and overcome the limitations of conventional formulations. Moreover, the carriers/dressing materials are biocompatible, biodegradable, stimulate wound healing, protect the wound from external environmental contamination, adsorb the wound exudates, and are permeable to oxygen and moisture. This review will help researchers to explore further the treatment of various bacterial skin infections by using MUP-loaded novel formulations with better efficacy, utilizing the novel nanostructures or combinatorial methods.


Materials ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 7533
Author(s):  
Magdalena Głąb ◽  
Anna Drabczyk ◽  
Sonia Kudłacik-Kramarczyk ◽  
Marcel Krzan ◽  
Bożena Tyliszczak

This work focused on obtaining and characterizing hydrogels with their potential application as dressing materials for chronic wounds. The research included synthesizing chitosan-based hydrogels modified with Equisetum arvense L. (horsetail) extract via photopolymerization, and their characteristics determined with regard to the impact of both the modifier and the amount of crosslinker on their properties. The investigations included determining their sorption properties and tensile strength, evaluating their behavior in simulated physiological liquids, and characterizing their wettability and surface morphology. The release profile of horsetail extract from polymer matrices in acidic and alkaline environments was also verified. It was proved that hydrogels showed swelling ability while the modified hydrogels swelled slightly more. Hydrogels showed hydrophilic nature (all contact angles were <77°). Materials containing horsetail extract exhibited bigger elasticity than unmodified polymers (even by 30%). It was proved that the extract release was twice as effective in an acidic medium. Due to the possibility of preparation of hydrogels with specific mechanical properties (depending on both the modifier and the amount of crosslinker used), wound exudate sorption ability, and possibility of the release of active substance, hydrogels show a great application potential as dressing materials.


Author(s):  
Berta Díez ◽  
W. Joseph A. Homer ◽  
Laura J. Leslie ◽  
Georgios Kyriakou ◽  
Roberto Rosal ◽  
...  

2021 ◽  
Vol 11 (12) ◽  
pp. 1966-1974
Author(s):  
Wei Wei ◽  
Liang Xing ◽  
Jianke Feng

Wound dressing materials are essential in wound healing care management. In addition to their supportive effect on the care management, polysaccharides and metal oxide nanoparticles actively contribute to the healing process. CeO2 nanoparticles can promote wound healing through oxidative damage in the wound environment against elevated levels of reactive oxygen species. Therefore, it is necessary to develop multi-functional hydrogel wound dressing materials to stimulate wound healing. In this study, a CeO2-loaded poly(ɛ-caprolactone)/PEC polymeric hydrogel was fabricated as a cutaneous wound-healing material. The in-vitro cytotoxic and wound healing activities were analyzed using the fabricated material in mice. A histological examination showed that the nanofibrous material accelerated the reepithelialization and provided an excellent collagen deposition. In addition, the prepared hydrogels were tested against S. aureus and E. coli. Our results evidence the unique characteristics of the hydrogel wound dressing material exhibiting antibacterial and antioxidant activities and good biocompatibility and healing efficiencies by enhancing the reepithelialization and granulation formation and effectively accelerating the wound healing to prevent skin infections.


Polymers ◽  
2021 ◽  
Vol 13 (23) ◽  
pp. 4131
Author(s):  
Dong-Jin Lim ◽  
Insoo Jang

In diabetes, lower extremity amputation (LEA) is an irreversible diabetic-related complication that easily occurs in patients with diabetic foot ulcers (DFUs). Because DFUs are a clinical outcome of different causes including peripheral hypoxia and diabetic foot infection (DFI), conventional wound dressing materials are often insufficient for supporting the normal wound healing potential in the ulcers. Advanced wound dressing development has recently focused on natural or biocompatible scaffolds or incorporating bioactive molecules. This review directs attention to the potential of oxygenation of diabetic wounds and highlights current fabrication techniques for oxygen-releasing composites and their medical applications. Based on different oxygen-releasable compounds such as liquid peroxides and solid peroxides, for example, a variety of oxygen-releasing composites have been fabricated and evaluated for medical applications. This review provides the challenges and limitations of utilizing current oxygen releasable compounds and provides perspectives on advancing oxygen releasing composites for diabetic-related wounds associated with DFUs.


2021 ◽  
Vol 17 (3) ◽  
pp. 163-168
Author(s):  
Hyun Jeong Ha ◽  
Jun Young Yang ◽  
Chan Woo Kim ◽  
Seong Heum Jeong ◽  
Euna Hwang

Background: Polyurethane (PU) foam dressing materials have been widely used in commercial wound dressing applications. However, the repeated application of adhesive tapes to keep the foam dressings in place can result in minor injuries to the peri-wound skin. Silicone-adhesive PU foam dressing materials have been developed to prevent such injuries. In this study, the satisfaction levels between conventional and silicone-adhesive PU foams were assessed through a survey of patients and physicians.Methods: A survey study of 140 patients with skin wounds was conducted in a single institution between July 2019 and May 2020. The patients were first treated with either conventional PU foam or silicone-adhesive PU foam, after which they were asked to record their levels of pain, adhesiveness, waterproofness, and satisfaction. At the next visit, dressings of the other material were applied to their wounds, and the same assessment process was repeated at the next dressing change.Results: The silicone-adhesive PU foam dressings demonstrably reduced the levels of dressing-related trauma and pain, compared to that of patients treated with conventional PU foam dressings. The silicone-adhesive PU foam dressings were also associated with substantially higher scores of satisfaction and waterproofness. In comparison, the mean adhesiveness score was superior in the group treated with conventional PU foam dressings, compared to that of the group treated with silicone-adhesive PU foam dressings.Conclusion: Silicone-adhesive PU foam contributed to minimizing pain during dressing change and increasing patient’s comfort. As a result, patients preferred dressing with silicone-adhesive PU foam over conventional PU foam.


2021 ◽  
Vol 22 (21) ◽  
pp. 11474
Author(s):  
Michal Wojcik ◽  
Paulina Kazimierczak ◽  
Vladyslav Vivcharenko ◽  
Malgorzata Koziol ◽  
Agata Przekora

Bioactive dressings are usually produced using natural or synthetic polymers. Recently, special attention has been paid to β-glucans that act as immunomodulators and have pro-healing properties. The aim of this research was to use β-1,3-glucan (curdlan) as a base for the production of bioactive dressing materials (curdlan/agarose and curdlan/chitosan) that were additionally enriched with vitamin C and/or hydrocortisone to improve healing of chronic and burn wounds. The secondary goal of the study was to compressively evaluate biological properties of the biomaterials. In this work, it was shown that vitamin C/hydrocortisone-enriched biomaterials exhibited faster vitamin C release profile than hydrocortisone. Consecutive release of the drugs is a desired phenomenon since it protects wounds against accumulation of high and toxic concentrations of the bioactive molecules. Moreover, biomaterials showed gradual release of low doses of the hydrocortisone, which is beneficial during management of burn wounds with hypergranulation tissue. Among all tested variants of biomaterials, dressing materials enriched with hydrocortisone and a mixture of vitamin C/hydrocortisone showed the best therapeutic potential since they had the ability to significantly reduce MMP-2 synthesis by macrophages and increase TGF-β1 release by skin cells. Moreover, materials containing hydrocortisone and its blend with vitamin C stimulated type I collagen deposition by fibroblasts and positively affected their migration and proliferation. Results of the experiments clearly showed that the developed biomaterials enriched with bioactive agents may be promising dressings for the management of non-healing chronic and burn wounds.


2021 ◽  
Vol 2021 ◽  
pp. 385-390
Author(s):  
M. Râpă ◽  
M.D. Berechet ◽  
C. Gaidău ◽  
R.R. Constantinescu ◽  
A. Moșuțiu

One approach to develop innovative antimicrobial wound dressing materials is to use natural polymers loaded with antimicrobial agents. The valorisation of animal proteins as biomaterials with antimicrobial properties is a new concern for development of wound healing. Plant esssential oils (EO) also indicate a potential approach for new wound dressing materials able to replace the synthetic antymicrobial agents. In this paper, plant-polymeric film was prepared by casting film-forming emulsion based on lemongrass (Cymbopogon flexuosus) essential oil/Tween 80 dispersed into rabbit collagen glue hydrolysate– chitosan biomaterial. The effect of biomaterial film composition on Staphylococcus aureus ATCC 6538 and Escherichia coli ATCC 10536 standard bacteria, and Candida albicans ATCC 10231 pathogenic fungus was studied according to European Pharmacopoeia 10/2020 as compared with biomaterial film without essential oil. The in vitro antibacterial tests against three bacterial strains showed that the rabbit collagen glue hydrolysate–chitosan biomaterial inhibited all the three microorganisms. The rabbit collagen hydrolysate glue-chitosan film loaded with lemongrass essential oil exhibits antimicrobial activity towards tested microorganisms but lower as compared with control. The explanation could be due to the short time of investigation, or maybe some active compounds constituents of EO, which favour the cellular proliferation. Preparation of rabbit collagen glue hydrolysate-chitosan biomaterial loaded with lemongrass essential oil is an environmentally friendly solution, which may contribute to the development of wound healing materials as an alternative to topical antimicrobial agents.


Author(s):  
Ravi Kumar Chittoria ◽  
Neljo Thomas ◽  
Padmalakshmi Bharathi Mohan ◽  
Shijina Koliyath ◽  
Imran Pathan ◽  
...  

Different methods of treatment options and dressing materials are available in today’s era of medical management of wounds. Trilaminar dermal regeneration template (TDRT) has been in use since the 1980s but owing to its high cost, its affordability and availability in third world developing countries is sparse. Here we have described our experience with the use of an indigenously made cost effective dermal regeneration template made from available materials in management of burns


Sign in / Sign up

Export Citation Format

Share Document