measured pressure
Recently Published Documents


TOTAL DOCUMENTS

233
(FIVE YEARS 26)

H-INDEX

24
(FIVE YEARS 1)

Sensors ◽  
2021 ◽  
Vol 21 (23) ◽  
pp. 8120
Author(s):  
Cederick Landry ◽  
Daniel Loewen ◽  
Harish Rao ◽  
Brendan L. Pinto ◽  
Robert Bahensky ◽  
...  

Objectives: Grip force during hand tool operation is the primary contributor to tendon strain and related wrist injuries, whereas push force is a contributor to shoulder injuries. However, both cannot be directly measured using a single measurement instrument. The objective of this research was to develop and test an algorithm to isolate the grip and push force distributions from in-situ hand-handle pressure measurements and to quantify their distributions among industrial workers using an electric nutrunner. Methods: Experienced automobile assembly line workers used an industrial nutrunner to tighten fasteners at various locations and postures. The pressure applied by the hand on the tool handle was measured dynamically using pressure sensors mounted on the handle. An algorithm was developed to compute the push force applied to the handle of an electric pistol-grip nutrunner based on recorded pressure measurements. An optimization problem was solved to find the contribution of each measured pressure to the actual pushing force of the tool. Finally, the grip force was determined from the difference between the measured pressure and the calculated pushing pressure. Results: The grip force and push force were successfully isolated and there was no correlation between the two forces. The computed grip force increased from low to high fastener locations, whereas the push force significantly increased during overhead fastening. A significant difference across the participants’ computed grip forces was observed. The grip force distribution showed that its contribution to total hand force was larger than other definitions in the literature. Conclusions: The developed algorithm can aid in better understanding the risk of injury associated with different tasks through the notion of grip and push force distribution. This was shown to be important as even workers with considerable power tool experience applied significantly more grip and push force than other participants, all of whom successfully completed each task. Moreover, the fact that both forces were uncorrelated shows the need for extracting them independently.


Author(s):  
Ben Evans ◽  
Jack Townsend ◽  
Oubay Hassan ◽  
Kenneth Morgan ◽  
Ron Ayers ◽  
...  

The land speed record vehicle, Bloodhound, undertook testing at subsonic and low transonic speeds (up to Mach 0.8) at Hakskeen Pan, South Africa, during October and November of 2019. A decade of CFD-led aerodynamic design had been undertaken to produce a vehicle with the aim of minimised Mach number aerodynamic dependencies and minimised overall drag. This paper sets out and explains the measured pressure distributions with a focus on the highest speed run of Bloodhound up to a peak speed of 628 mile/h. It compares the measured aerodynamic performance with the various CFD model predictions used throughout the design process showing that, whilst localised discrepancies between CFD model and real behaviour exist, overall the Reynolds-averaged Navier–Stokes (RANS)-based CFD tools used to design the car did result in sufficiently accurate aerodynamic data to predict the overall vehicle performance to a high degree of accuracy. The work outlined in this paper, and the conclusions and recommendations drawn, form the basis for a future record attempt and the understanding of what will be required in principle to extend the World Land Speed Record to 1000 mile/h. It also provides guidance on how to effectively make use of RANS-based CFD modelling predictions for other complex, ground-interacting high-speed applications.


Sensors ◽  
2021 ◽  
Vol 21 (15) ◽  
pp. 5240
Author(s):  
Vytautas Bucinskas ◽  
Andrius Dzedzickis ◽  
Juste Rozene ◽  
Jurga Subaciute-Zemaitiene ◽  
Igoris Satkauskas ◽  
...  

Human falls pose a serious threat to the person’s health, especially for the elderly and disease-impacted people. Early detection of involuntary human gait change can indicate a forthcoming fall. Therefore, human body fall warning can help avoid falls and their caused injuries for the skeleton and joints. A simple and easy-to-use fall detection system based on gait analysis can be very helpful, especially if sensors of this system are implemented inside the shoes without causing a sensible discomfort for the user. We created a methodology for the fall prediction using three specially designed Velostat®-based wearable feet sensors installed in the shoe lining. Measured pressure distribution of the feet allows the analysis of the gait by evaluating the main parameters: stepping rhythm, size of the step, weight distribution between heel and foot, and timing of the gait phases. The proposed method was evaluated by recording normal gait and simulated abnormal gait of subjects. The obtained results show the efficiency of the proposed method: the accuracy of abnormal gait detection reached up to 94%. In this way, it becomes possible to predict the fall in the early stage or avoid gait discoordination and warn the subject or helping companion person.


Biosensors ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 213
Author(s):  
Baoyue Zhang ◽  
Ziyi Huang ◽  
Huixue Song ◽  
Hyun Soo Kim ◽  
Jaewon Park

Monitoring of intracranial pressure (ICP) is important for patients at risk of raised ICP, which may indicate developing diseases in brains that can lead to brain damage or even death. Monitoring ICP can be invaluable in the management of patients suffering from brain injury or hydrocephalus. To date, invasive measurements are still the standard method for monitoring ICP; however, these methods can not only cause bleeding or infection but are also very inconvenient to use, particularly for infants. Currently, none of the non-invasive methods can provide sufficient accuracy and ease of use while allowing continuous monitoring in routine clinical use at low cost. Here, we have developed a wearable, non-invasive ICP sensor that can be used like a band-aid. For the fabrication of the ICP sensor, a novel freeze casting method was developed to encapsulate the liquid metal microstructures within thin and flexible polymers. The final thickness of the ICP sensor demonstrated is 500 µm and can be further reduced. Three different designs of ICP sensors were tested under various pressure actuation conditions as well as different temperature environments, where the measured pressure changes were stable with the largest stability coefficient of variation being only CV = 0.0206. In addition, the sensor output values showed an extremely high linear correlation (R2 > 0.9990) with the applied pressures.


Author(s):  
Lucas M. Merckelbach ◽  
Jeffrey R. Carpenter

AbstractAutonomous, buoyancy-driven ocean gliders are increasingly used as a platform for the measurement of turbulence microstructure. In the processing of such measurements, there is a sensitive (quartic) dependence of the turbulence dissipation rate, ϵ, on the speed of flow past the sensors, or alternatively, the speed of the glider through the ocean water column. The mechanics of glider flight is therefore examined by extending previous flight models to account for the effects of ocean surface waves. It is found that due to the relatively small buoyancy changes used to drive gliders, the surface wave-induced motion, superimposed onto the steady-state motion, follows to a good approximation the motion of the wave orbitals. Errors expected in measuring ϵ at the ocean near-surface due to wave-induced relative velocities are generally less than 10%. However, pressure perturbations associated with the wave motion can be significant when using the glider-measured pressure signal to infer the glider vertical velocity. This effect of surface waves is only present in the shallow water regime, and can also affect glider depth measurements. It arises from an incomplete cancellation of the wave-induced pressure perturbation with the hydrostatic component due to vertical glider displacements, whereas for deep-water waves this cancellation is complete.


Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-20
Author(s):  
Caiwei Fan ◽  
Changgui Xu ◽  
Chao Li ◽  
Aiqun Liu ◽  
Hu Li ◽  
...  

The Yinggehai Basin is a typical high temperature and high pressure (HTHP) gas-bearing basin. The pressure coefficient exceeds 2.2 in deeply-buried Miocene reservoirs in the Ledong Slope, a nondiapir zone in the Yinggehai Basin. Determining the overpressure mechanisms and predicting the pore pressure are key issues for natural gas exploration and development in the Ledong Slope. In this paper, overpressure mechanisms were investigated according to the analysis of vertical effective stress-logging responses and geological evaluations, and the pore pressure was predicted using the Bowers method. The loading-unloading crossplots indicated that the overpressure that existed in reservoirs mainly consists of two types: neighbor-source and allo-source overpressure. The neighbor-source overpressure is mainly caused by the pressure transmission from the adjacent mudstone to the reservoir, with a pressure coefficient less than 1.5 ~ 1.6. The high-magnitude overpressure points with pressure coefficients greater than 1.6 show a typical unloading response, indicating elevated sandstone pressures rather than in situ mudstone pressures, which are most likely to be generated by overpressure vertical transfer. The high-magnitude overpressure fluid generated by the high mature ultradeep buried N1s source rock migrated to the shallower reservoirs via hidden faults/microfractures, which led to the vertical transfer of overpressure. Vertically transferred overpressure was generated at 1.5 ~0.2 Ma, which is beneficial for the preservation of overpressure in lenticular sandbodies. The estimated pore pressure by the Bowers method is in good agreement with the measured pressure and provides a meaningful reference for predrilling pressure prediction in nondiapir or diapir zones in the Yinggehai Basin.


2021 ◽  
Vol 71 ◽  
pp. 241-247
Author(s):  
S. Bancora ◽  
C. Binetruy ◽  
S. Advani ◽  
S. Comas-Cardona

PLoS ONE ◽  
2021 ◽  
Vol 16 (2) ◽  
pp. e0246031
Author(s):  
Katharina Linden ◽  
Christian Winkler ◽  
Johannes Breuer ◽  
Ulrike Herberg

Objectives The gold standard to obtain pressure-volume relations (PVR) of the heart, the conductance technology (PVRCond), is rarely used in children. PVR can also be obtained by 3D-echocardiography volume data combined with simultaneously measured pressure data by a mini pressure-wire (PVR3DE). We sought to investigate the feasibility of both methods in patients with univentricular hearts and to compare them, including hemodynamic changes. Methods We studied 19 patients (age 2–29 years). PVR3DE and PVRCond were assessed under baseline conditions and stimulation with dobutamine. Results Obtaining PVR3DE was successful in all patients. Obtaining PVRCond was possible in 15 patients during baseline (79%) and in 12 patients under dobutamine (63%). Both methods showed that end-systolic elastance (Ees) and arterial elastance (Ea) increased under dobutamine and that Tau showed a statistically significant decrease. Intraclass correlation (95% confidence interval) showed moderate to good agreement between methods: Ees: 0.873 (0.711–0.945), Ea: 0.709 (0.336–0.873), Tau: 0.867 (0.697–0.942). Bland-Altman analyses showed an acceptable bias with wider limits of agreement: Ees: 1.63 mmHg/ml (-3.83–7.08 mmHg/ml), Ea: 0.53 mmHg/ml (-5.23–6.28 mmHg/ml), Tau: -0,76 ms (-10.73–9.21 ms). Conclusion Changes of PVR-specific parameters under dobutamine stimulation were reflected in the same way by both methods. However, the absolute values for these parameters could vary between methods and, therefore, methods are not interchangeable. Obtaining PVR3DE in a single ventricle was easier, faster and more successful than PVRCond. PVR3DE provides a promising and needed alternative to the conductance technology for the assessment of cardiac function in univentricular hearts.


Energies ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 279
Author(s):  
Oyindamola Obisesan ◽  
Ramadan Ahmed ◽  
Mahmood Amani

The properties of foams are often affected by environmental variables such as salt contamination. The objective of this study is to investigate the impact of salt on the drainage behavior of aqueous foams. To accomplish this objective, drainage experiments were conducted on aqueous foams. Test variables were foam quality (40–65%), and salt content (0% to 18%), and type. To investigate drainage, the foam was generated in a flow loop and trapped in a vertical test section. Then, the pressure profile in the foam column was measured using ten pressure sensors. Foam drainage is determined as a function of time using measured pressure profiles. The results show that the drainage of NaCl-containing foams decreased with foam quality, whereas the CaCl2-containing foams did not exhibit a clear trend with foam quality. The effect of salt content on foam rheology was minimal.


2020 ◽  
Author(s):  
Beatriz Arias-Arcos ◽  
Carlos Collado-Escudero ◽  
Ariela Candelario-Cáceres ◽  
Maria Jesus Buendia-García ◽  
Alfredo Abad-Gurumeta ◽  
...  

Abstract PurposeThe scenario of global health crisis due to SARS-CoV-2 pandemia combined with the shortage of resources in many countries has justified numerous studies to design easily replicable and economic respiratory support devices. We have developed an adapted diving mask (ADM) to be used as an autonomous and safe respiratory support. The objective was to prove a minimum positive end expiratory pressure (PEEP) with the ADM without any adverse events.MethodsBench tests was done in 22 healthy volunteers with our ADM prototype. Expiratory-inspiratory flow and pressure were registered apart from blood and transcutaneous hypercapnia.ResultsThere were no statistically significant differences in the baseline analysis results and after therapy, except in pO2. Mean PEEP measured was 8.2 ± 4.2 cmH2O with a peak measured pressure of 20 cm H2O.ConclussionsThe ADM has shown good tolerance and a therapeutic manteining PEEP with no evidence of any deletereous effect or hypercapnia with its continuous use.


Sign in / Sign up

Export Citation Format

Share Document