free radical scavenging
Recently Published Documents


TOTAL DOCUMENTS

2837
(FIVE YEARS 649)

H-INDEX

102
(FIVE YEARS 10)

Author(s):  
Wei-Hsun Wang ◽  
Wei-Lin Li ◽  
Cheng-You Chen ◽  
Min-Yun Chang ◽  
Shu-Ling Huang ◽  
...  

Abstract Background Chenopodium formosanum (CF) provides the human body with numerous nutritional components. This study used the two-phase system to identify an efficient method to obtain CF extracts. CF extraction was performed using an ethanol–ammonium sulfate two-phase system. The efficacy of different CF extracts with five types of antioxidant ability was tested and compared with traditional aqueous and alcohol extractions. Results The results showed that a separated top of the two-phase system extract had higher total phenol content (120.35 ± 5.80 mg gallic acid equivalent/g dry extract), total flavonoid content (447.06 ± 16.57 mg quercetin equivalent/g dry extract) and reducing ability (284.48 ± 4.60 mg vitamin C equivalent/g dry extract) than those of other extracts. Furthermore, the separated top of the two-phase system extract and the top of the two-phase system extract had higher 1,1-diphenyl-2-picrylhydrazyl free radical scavenging ability and 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) free radical scavenging ability than those of the water extract, alcohol extract, bottom of two-phase system extract, and separated bottom of two-phase system extract. Conclusions The results indicate that CF has great potential for use in natural plant health supplements and skin care products and that the two-phase extraction system can yield an effective CF extract. Graphical Abstract


Gels ◽  
2022 ◽  
Vol 8 (1) ◽  
pp. 61
Author(s):  
Zujin Yang ◽  
Youliang Guan ◽  
Hongbing Ji

Oxidation is an important cause of fruit spoilage, and therefore improving the antioxidant capacity of fresh fruits is beneficial to their preservation. Herein, fresh-cut bananas were used as a type of fresh fruit and soaked in 75% hydroalcoholic gels containing salicylic acid (SA) or SA/β-CD inclusion complex (SA/β-CD). After treatment, they were placed in an atmosphere at 85% relative humidity at 20 °C for 12 days. A significant reduction in spoilage in bananas treated with the hydroalcoholic gels in the presence of SA/β-CD was observed, compared with those treated with gels in the presence or absence of SA. The free-radical-scavenging performances of SA and its complex were investigated using the DPPH (1,1-diphenyl-2-picryl-hydrazil) method. Based on the results, the significant increase in antioxidant activity was attributed to the fact that the inclusion complex could break the intramolecular hydrogen bonding of SA, thus efficiently eliminating ROS in the fruits. The formation of the inclusion complex was confirmed by experiments and theoretical calculations. Our findings indicate that treatment with SA/β-CD can provide an efficient method of maintaining postharvest quality and extending the shelf life of bananas.


2022 ◽  
Vol 8 (1) ◽  
pp. 192-199
Author(s):  
Mahesh Kumar D

Background: Silver Nanoparticles are drawing significant attention from the scientific community to explore a wide range of its medical applications. Human body is under constant stress due to free radicals generated by the physiological and pathological conditions in the body. Scavenging systems or Antioxidants can help alleviate the damages caused by these radicals which can influence the course of progress in several chronic diseases with an inflammatory background. External antioxidants supplement and facilitate the overwhelmed scavenging systems in the body.Silver Nanoparticles can enhance the therapeutic effects of phytochemicals. Aim: To Synthesize silver nanoparticles using the phytochemical Hesperidin and studying its Free radical scavenging activity. Methods: Silver Nanoparticles are synthesized using chemical reduction method. The synthesis is confirmed using spectrophotometric studies. Free Radical scavenging activity is detected using 1, 1-diphenyl-2-picrylhydrazyl (DPPH •) free radical scavenging assay. Results: Silver nanoparticles were successfully synthesized which was confirmed by the change in color of the solution and peak absorbance peak at 420 nM on spectrophotometric studies.Hesperidin Silver Nanoparticles exhibited higher free radical scavenging activity when compared with pure hesperidin and standard Ascorbic acid. Conclusion: Hesperidin can ideally be used for the synthesis of silver nanoparticles and the synthesized Silver Nanoparticles enhances the free radical scavenging activity of Hesperidin which can further be evaluated by In Vivo studies.


2022 ◽  
Vol 6 (1) ◽  
pp. 01-07
Author(s):  
Mohammad Azizur Rahman ◽  
Tawhidur Rahman ◽  
Moshiur Rahman ◽  
Mirza Arif

The present article reviews the history of mushroom uses in culinary, food and medicinal values; current status and future aspect of mushroom research. Mushrooms contain biologically active polysaccharides, lipid and proteins in fruit bodies, each of them has a distinct role in health as either nutritional value or medicinal elements. Immunostimulating polysaccharides found in mushrooms, are most important for modern medicine. Several of the mushroom biomolecules have undergone phase I, II, and III clinical trials and are used extensively and successfully throughout the world for the treatment of various cancers and other diseases. Medicinal functions played by the mushrooms include antitumor, antibacterial, antioxidant, antiparasitic, antidiabetic, detoxification, cardiovascular, antihypercholesterolemia, antiviral, antifungal, hepatoprotective, immunomodulating and free radical scavenging. The present review draws attention to nutritional and medicinal importance of mushroom as well as the problems and opportunity in the future development of mushroom research.


2022 ◽  
Author(s):  
Parsa Gholipour ◽  
alireza komaki ◽  
Mahdi Ramezani

Abstract Aims: Oxidative stress and neuronal death are the primary reasons for the progression of amyloid-beta (Aβ) deposition and cognitive deficits in Alzheimer’s disease (AD). Ecdysterone (Ecdy), a common derivative of ecdysteroids, possesses free radical scavenging and cognitive-improving effects. High-intensity interval training (HIIT) may be a therapeutic strategy for improving cognitive decline and oxidative stress. The present study was aimed to evaluate the effect of HIIT alone and its combination with Ecdysterone on the changes in learning and memory functions, hippocampal antioxidant enzymes activities, and neuronal population after AD induced by Aβ in male rats.Materials and methods: Following ten days of Aβ-injection, HIIT exercise and Ecdysterone treatment (10 mg/kg/day; P.O.) were initiated and continued for eight consecutive weeks in rats. At the end of the treatment period, rat’s learning and memory functions were assessed using water-maze and passive-avoidance tests. Moreover, the activity of superoxide dismutase (SOD), catalase (CAT), Glutathione Peroxidase (GPx), Glutathione Reductase (GRx) and neuronal population were evaluated in rat’s brains.Results: The results indicated that Aβ injection disrupted spatial/passive avoidance learning and memory in both water-maze and passive-avoidance paradigms, accompanied by a decrease in the superoxide dismutase and catalase (as endogenous antioxidants) in rat hippocampus. Additionally, Aβ injection resulted in neuronal loss in the cerebral cortex and hippocampus. Although consumption of Ecdysterone separately improved spatial/passive avoidance learning and memory impairments, recovered hippocampal activity of SOD, CAT, GRx, GRx and prevented the hippocampal neuronal loss, its combination with HIIT resulted in a more powerful and effective amelioration in all the above-mentioned Aβ-neuropathological changes.Conclusion: The current work's data confirms that a combination of HIIT exercise and Ecdysterone treatment could be a promising potential therapeutic agent against AD-associated cognitive decline, owing to their free radical scavenging and neuroprotective properties.


2022 ◽  
Author(s):  
Sania Naz ◽  
Anila Sajjad ◽  
Joham Ali ◽  
MUHAMMAD ZIA

Comparative nutritional analysis of citrus varieties cultivated in Pakistan has not been reported. Citrus is consumed all over the world due to its taste and also has pharmacological components. The present investigation evaluated the antioxidant, reducing power, total flavonoids and phenolics, DPPH free radical scavenging, protein kinase inhibition, and the antimicrobial activities of eight Pakistani citrus varieties. Grapefruit showed maximum total antioxidant potential (77 µg AAE/100 mg), followed by Kinnow and Shakri. Khatai showed maximum reducing power potential (69.6 µg AAE/100 mg) while Shakri and Grapefruit trailed it. All the varieties showed significant DPPH free radical scavenging activity. Maximum total phenolics in citrus juice were found in Shakri and Kinnow; 26.2 and 25.9 µg GAE/100mg, respectively. Variation in total flavonoids content was observed as Kinnow>Grapefruit>Shakri>Khatai. All the citrus juices showed mild to moderate antibacterial activity, while Mosambi and Malta contained potent antifungal components. HPLC analysis of citrus juices revealed that catechin was present in all citrus genotypes except Kinnow. The study concludes that citrus juices contain strong antioxidative potential, bear protein kinase inhibitors and can be used as cancer chemoprevention and supportive nutrition.


Antioxidants ◽  
2022 ◽  
Vol 11 (1) ◽  
pp. 123
Author(s):  
Yen-Tung Lee ◽  
Yu-Li Chen ◽  
Yi-Hsuan Wu ◽  
Ih-Sheng Chen ◽  
Hsun-Shuo Chang ◽  
...  

The pathogenesis of acute respiratory distress syndrome (ARDS) is very complex. Patients with ARDS still suffer high mortality rates. Infiltration and activation of neutrophils in lungs are critical pathogenic factors in ARDS. In this study, we demonstrate that meso-dihydroguaiaretic acid (MDGA), a natural lignan, inhibits inflammatory responses in human neutrophils and ameliorates ARDS in mice. MDGA inhibited superoxide anion generation and elastase release in various G-protein coupled receptor agonists-induced human neutrophils. However, MDGA did not alter superoxide anion generation and elastase activity in cell-free systems. These results suggest that the anti-inflammatory effects of MDGA are mediated by regulating cellular signals in human neutrophils. In consistent with this, MDGA suppressed phosphorylation of extracellular signal-regulated kinase and c-Jun N-terminal kinase in activated human neutrophils. Moreover, MDGA inhibited CD11b expression and adhesion in activated human neutrophils. Interestingly, MDGA reduced reactive oxygen species (ROS) generation but not superoxide anion generation in protein kinase C (PKC) activator-induced human neutrophils, suggesting that MDGA may also have ROS scavenging ability. Indeed, MDGA showed strong free radical scavenging activity in cell-free assays. Significantly, MDGA suppressed PKC-induced neutrophil extracellular trap formation. Additionally, treatment of MDGA attenuated neutrophil infiltration and lung damage on lipopolysaccharide-induced ARDS in mice. In conclusion, our results demonstrate that MDGA has anti-neutrophilic inflammatory effects and free-radical scavenging activity. We also suggest that MDGA has potential to serve as a lead for developing new therapeutics to treat ARDS.


Plants ◽  
2022 ◽  
Vol 11 (2) ◽  
pp. 147
Author(s):  
Laima Česonienė ◽  
Paulina Štreimikytė ◽  
Mindaugas Liaudanskas ◽  
Vaidotas Žvikas ◽  
Pranas Viškelis ◽  
...  

Berries of Actinidia kolomikta (A. kolomikta) are known for high ascorbic acid content, but the diversity of phenolic compounds has been little studied. The present research aimed to investigate phenolic compounds and antioxidant activity in berries and leaves of twelve A. kolomikta cultivars. The UHPLC-ESI-MS/MS technique was used to determine differences among cultivars in the quantitative composition of individual phenolic compounds. Antioxidant activity was determined by DPPH• free radical scavenging and CUPRAC methods. In the present study, 13 phenolic compounds were detected in berries, whereas leaves contained 17 phenolic compounds. Flavonols were the primary class found in both berries and leaves; other identified phenolic compounds were flavan-3-ols, flavones and, phenolic acids; and dihydrochalcone phloridzin was identified in the leaves. The amount and variety of phenolic compounds in berries and leaves and antioxidant activity were found to be cultivar-dependent. The highest total content of phenolic compounds was found in the leaves of the cultivar ‘Aromatnaja’ and in the berries of the cultivar ‘VIR-2’. Results of this study have confirmed that berries and leaves of A. kolomikta could be a valuable raw material for both food and pharmaceutical industries.


2022 ◽  
Vol 23 (2) ◽  
pp. 603
Author(s):  
Nikola Sobočan ◽  
Marta Himelreich-Perić ◽  
Ana Katušić-Bojanac ◽  
Jure Krasić ◽  
Nino Sinčić ◽  
...  

Antioxidant N–tert–Butyl–α–phenylnitron (PBN) partly protected embryos from the negative effects of a DNA demethylating drug 5-azacytidine during pregnancy. Our aim was to investigate PBN’s impact on the placenta. Fischer rat dams were treated on gestation days (GD) 12 and 13 by PBN (40 mg/kg), followed by 5azaC (5 mg/kg) after one hour. Global methylation was assessed by pyrosequencing. Numerical density was calculated from immunohistochemical expression in single cells for proliferating (PCNA), oxidative (oxoguanosine) and nitrosative (nitrotyrosine) activity. Results were compared with the PBN-treated and control rats. PBN-pretreatment significantly increased placental weight at GD15 and GD20, diminished by 5azaC, and diminished apoptosis in GD 20 placentas caused by 5azaC. Oxoguanosine expression in placentas of 5azaC-treated dams was especially high in the placental labyrinth on GD 15, while PBN-pretreatment lowered its expression on GD 15 and GD 20 in both the labyrinth and basal layer. 5azaC enhanced nitrotyrosine level in the labyrinth of both gestational stages, while PBN-pretreatment lowered it. We conclude that PBN exerted its prophylactic activity against DNA hypomethylating agent 5azaC in the placenta through free radical scavenging, especially in the labyrinthine part of the placenta until the last day of pregnancy.


Author(s):  
Bienfait Kabuyaya Isamura ◽  
Issofa Patouossa ◽  
Isaac Kaba Elaka ◽  
Aristote Matondo ◽  
Pius Tshimankinda Mpiana

The meta hybrid M06-2X functional combined with the 6-311++G(d,p) basis set are used to investigate the antioxidant activity of five benzoic acid derivatives naturally occurring in several plant food: gallic acid, para-hydroxybenzoic acid, protocatechuic acid, syringic acid and vanillic acid. To assess the antioxidant properties of these compounds, three mechanisms of free radicals scavenging are considered, namely the hydrogen atom transfer (HAT), stepwise electron transfer proton transfer (SET-PT) and sequential proton loss electron transfer (SPLET) models. The effect of polar environments on the antioxidant power of these compounds is mimicked in water and methanol using the IEF-PCM solvation method. Our findings suggest that HAT is the preferred mechanistic pathway in gas phase, while SPLET is favoured in polar mediums. Protocatechuic and gallic acids are the most active in gas and polar solutions respectively, whereas PHBA is the least active in all the environments considered. The O-H group in para position of the carboxylic group (O3-H for GA and O2-H for the rest) is confirmed to be the most reactive site in gas phase, while in solution it is either of the O1-H site (for PHBA, PCA, SA and VA) or O4-H groups (for GA). The “HOMO-rule” of free radical scavenging ability does not seem to account properly for the antioxidant properties of this set of chemicals.


Sign in / Sign up

Export Citation Format

Share Document