metal incorporation
Recently Published Documents


TOTAL DOCUMENTS

109
(FIVE YEARS 27)

H-INDEX

20
(FIVE YEARS 2)

Catalysts ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 10
Author(s):  
Gabriela Mota ◽  
José Vitor C. do Carmo ◽  
Camila B. Paz ◽  
Gilberto D. Saraiva ◽  
Adriana Campos ◽  
...  

The effects of the metal incorporation into hydroxyapatites on the deactivation behavior of the solids were examined in the esterification of glycerol (EG) reaction. The introduction of Cu, Co, or Ni ions by ion exchange in calcium-deficient hydroxyapatites resulted in active catalysts for the EG reaction. The metal contents were varied from 2.0 to 17.0%, providing better performances at rather high metal contents. Part of metal species existed in the hydroxyapatite lattice structure and also as isolated Cu2+, Ni2+, and Co2+ entities on the surface, as shown by XPS and EPR. The effects of the reaction temperature, reaction time, and glycerol to acetic acid molar ratios were deeply investigated. The spent solids used in this study were characterized by XRD, FTIR, SEM-EDS, chemical analyses, EPR, and XPS. The Cu2+–OH acid pairs could promote a superior catalytic performance of Cu-containing hydroxyapatites due to the resistance of these solids against leaching of the active species, which is even better than those of Co and Ni-containing counterparts with high metal contents. Cu into hydroxyapatite had a good reusability and long-term utilization for five consecutive cycles of 24 h under a glycerol to acetic acid molar ratio of 0.25 at 80 °C, and longer reaction times provide triacetin formation. This was due to the fact that Cu was stabilized by interacting with Ca, PO4, and OH sites into the hydroxyapatite lattice, being highly active for the EG reaction. The results also revealed that isolated Cu2+ sites played an important role in enhancing the glycerol conversion, intrinsically due to the Cu-containing hydroxyapatites ability to avoid strong adsorption of glycerol oligomers on the catalytic sites.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Alexander Chernyaev ◽  
Benjamin P. Wilson ◽  
Mari Lundström

AbstractThe role of aluminum concentration and pH in the purification of waste Li-ion battery leach solution was investigated using NaOH and LiOH as neutralization agents ([H2SO4] = 0.313 M, t = 6 h). Solution was prepared from synthetic chemicals to mimic real battery leach solution. Results demonstrate that pH (3.5–5.5) has a significant effect on the precipitation of metals (Fe, Al, Ni, Cu, Co, Mn, and Li), whereas higher temperature (T = 30 and 60 °C) decreases the precipitation pH of metals. Iron and aluminum were both found to precipitate at ca. pH 4 and the presence of aluminum in PLS clearly decreased the separation efficiency of Fe vs. active material metals (Ni, Co, Li). In the absence of dissolved aluminum, Fe precipitated already at pH 3.5 and did not result in the co-precipitation of other metals. Additionally, the Al-free slurry had a superior filtration performance. However, aluminum concentrations of 2 and 4 g/L were found to cause loss of Ni (2–10%), Co (1–2%) and Li (2–10%) to the Fe-Al hydroxide cake at pH 4. The use of LiOH (vs. NaOH) resulted in 50% lower co-precipitation of Ni, Co and Li. Overall, these results demonstrate that hydroxide precipitation can be an effective method to remove iron from battery waste leach solutions at aluminum concentrations of < 2 g/L only. Although the highest level of lithium loss in the cake was found at pH 4, the loss was shown to decrease with increasing pH.


2021 ◽  
Vol 11 (13) ◽  
pp. 6087
Author(s):  
Claudia Alvarado ◽  
Diego M. Cortez-Valladolid ◽  
Enrique J. Herrera-López ◽  
Ximena Godínez ◽  
José Martín Ramírez

Aquaculture offers great potential for fish production in Lake Chapala, but reports of heavy metal contamination in fish have identified a main concern for this activity. In the present study, cultures of the species Cyprinus carpio and Ictalurus punctatus were grown in a net cage in Lake Chapala. The patterns of heavy metal accumulation (Cu, Zn, Cd, Hg, Pb, As) in muscle and liver were monitored in order to evaluate the level of metal incorporation in the fish. Estimates of weekly metal intake (EWI) were made based on the results of the concentrations in edible parts of fish of commercial size. The patterns of metal bioaccumulation between tissues and species showed that liver had a higher concentrating capacity for Zn, Cu, Cd, and Pb. In contrast, similar concentrations of Hg and As were found in the liver and muscle tissue. According to the EWI estimates, the heavy metals in these cultured fish do not represent a risk for human consumption.


2021 ◽  
Author(s):  
Ye Yuan ◽  
Yajie Yang ◽  
Katie R. Meihaus ◽  
Shenli Zhang ◽  
Xin Ge ◽  
...  

Abstract The use of coordination complexes as building units within covalent organic frameworks (COFs) has significant potential to diversify the structures and properties of this class of materials. Here, we present a synergistic coordination and reticular chemistry approach to the design of a series of crystalline scandium–covalent organic frameworks (Sc–COFs), featuring tunable levels of metal incorporation. Removal of scandium from the material with the highest metal content results in a metal-imprinted COF (MICOF) that exhibits high affinity and capacity for Sc3+ ions in acidic environments and in the presence of competing metal ions. In particular, the selectivity of this MICOF for Sc3+ over common impurity ions such as La3+ and Fe3+ surpasses that of all reported scandium adsorbents. Importantly, analogous materials can be prepared starting from earth-abundant transition metals, highlighting the versatility of this approach for the development of tailor-made metal–COFs and MICOFs for applications involving selective metal ion capture.


2021 ◽  
Vol 118 (4) ◽  
pp. e2010642118
Author(s):  
Bin Zhu ◽  
Ding Yi ◽  
Yuxi Wang ◽  
Hongyu Sun ◽  
Gang Sha ◽  
...  

There has been a persistent effort to understand and control the incorporation of metal impurities in semiconductors at nanoscale, as it is important for semiconductor processing from growth, doping to making contact. Previously, the injection of metal atoms into nanoscaled semiconductor, with concentrations orders of magnitude higher than the equilibrium solid solubility, has been reported, which is often deemed to be detrimental. Here our theoretical exploration reveals that this colossal injection is because gold or aluminum atoms tend to substitute Si atoms and thus are not mobile in the lattice of Si. In contrast, the interstitial atoms in the Si lattice such as manganese (Mn) are expected to quickly diffuse out conveniently. Experimentally, we confirm the self-inhibition effect of Mn incorporation in nanoscaled silicon, as no metal atoms can be found in the body of silicon (below 1017 atoms per cm−3) by careful three-dimensional atomic mappings using highly focused ultraviolet-laser-assisted atom-probe tomography. As a result of self-inhibition effect of metal incorporation, the corresponding field-effect devices demonstrate superior transport properties. This finding of self-inhibition effect provides a missing piece for understanding the metal incorporation in semiconductor at nanoscale, which is critical not only for growing nanoscale building blocks, but also for designing and processing metal–semiconductor structures and fine-tuning their properties at nanoscale.


Sign in / Sign up

Export Citation Format

Share Document